【題目】如圖,直三棱柱ABC﹣A1B1C1中,AC⊥AB,AB=2AA1 , M是AB的中點(diǎn),△A1MC1是等腰三角形,D為CC1的中點(diǎn),E為BC上一點(diǎn).
(1)若DE∥平面A1MC1 , 求 ;
(2)求直線(xiàn)BC和平面A1MC1所成角的余弦值.
【答案】
(1)解:取BC中點(diǎn)N,連結(jié)MN,C1N,
∵M(jìn),N分別為AB,CB中點(diǎn)
∴MN∥AC∥A1C1,
∴A1,M,N,C1四點(diǎn)共面,
且平面BCC1B1∩平面A1MNC1=C1N,
又DE∩平面BCC1B1,
且DE∥平面A1MC1,∴DE∥C1N,
∵D為CC1的中點(diǎn),∴E是CN的中點(diǎn),
∴
(2)解:連結(jié)B1M,
因?yàn)槿庵鵄BC﹣A1B1C1為直三棱柱,∴AA1⊥平面ABC,
∴AA1⊥AB,即四邊形ABB1A1為矩形,且AB=2AA1,
∵M(jìn)是AB的中點(diǎn),∴B1M⊥A1M,
又A1C1⊥平面ABB1A1,
∴A1C1⊥B1M,從而B(niǎo)1M⊥平面A1MC1,
∴MC1是B1C1在平面A1MC1內(nèi)的射影,
∴B1C1與平面A1MC1所成的角為∠B1C1M,
又B1C1∥BC,
∴直線(xiàn)BC和平面A1MC1所成的角即B1C1與平面A1MC1所成的角
設(shè)AB=2AA1=2,且三角形A1MC1是等腰三角形
∴ ,則MC1=2, ,
∴cos = ,
∴直線(xiàn)BC和平面A1MC1所成的角的余弦值為 .
【解析】(1)取BC中點(diǎn)N,連結(jié)MN,C1N,由已知得A1 , M,N,C1四點(diǎn)共面,由已知條件推導(dǎo)出DE∥C1N,從而求出 .(2)連結(jié)B1M,由已知條件得四邊形ABB1A1為矩形,B1C1與平面A1MC1所成的角為∠B1C1M,由此能求出直線(xiàn)BC和平面A1MC1所成的角的余弦值.
【考點(diǎn)精析】關(guān)于本題考查的直線(xiàn)與平面平行的性質(zhì)和空間角的異面直線(xiàn)所成的角,需要了解一條直線(xiàn)與一個(gè)平面平行,則過(guò)這條直線(xiàn)的任一平面與此平面的交線(xiàn)與該直線(xiàn)平行;簡(jiǎn)記為:線(xiàn)面平行則線(xiàn)線(xiàn)平行;已知為兩異面直線(xiàn),A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三點(diǎn)A(1,2),B(﹣3,0),C(3,﹣2).
(1)求證△ABC為等腰直角三角形;
(2)若直線(xiàn)3x﹣y=0上存在一點(diǎn)P,使得△PAC面積與△PAB面積相等,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】要得到函數(shù)y=sin(4x﹣ )的圖象,只需將函數(shù)y=sin4x的圖象( )
A.向左平移 單位
B.向右平移 單位
C.向左平移 單位
D.向右平移 單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】廠(chǎng)為了對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷(xiāo),得到如下數(shù)據(jù):
單價(jià)x/元 | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
銷(xiāo)量y/件 | 90 | 84 | 83 | 80 | 75 | 68 |
(1)求線(xiàn)性回歸方程=x+,其中=-20, =- .
(2)預(yù)計(jì)在今后的銷(xiāo)售中,銷(xiāo)量與單價(jià)仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是4元/件,為使工廠(chǎng)獲得最大利潤(rùn),該產(chǎn)品的單價(jià)應(yīng)定為多少元?(利潤(rùn)=銷(xiāo)售收入-成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量,記.
(1)求的單調(diào)遞減區(qū)間及最小正周期;
(2)將函數(shù)的圖象向右平移個(gè)單位得到的圖象,若函數(shù)在上有零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,平面平面, 為等邊三角形, 且, 分別為的中點(diǎn).
(1)求證: 平面.
(2)求證:平面平面.
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知p:﹣x2+4x+12≥0,q:x2﹣2x+1﹣m2≤0(m>0).
(Ⅰ)若p是q充分不必要條件,求實(shí)數(shù)m的取值范圍;
(Ⅱ)若“¬p”是“¬q”的充分條件,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓過(guò), ,且圓心在直線(xiàn)上.
(Ⅰ)求此圓的方程.
(Ⅱ)求與直線(xiàn)垂直且與圓相切的直線(xiàn)方程.
(Ⅲ)若點(diǎn)為圓上任意點(diǎn),求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)命題p:x0∈(0,+∞),3 +x0=2016,命題q:a∈(0,+∞),f(x)=|x|﹣ax,(x∈R)為偶函數(shù),那么,下列命題為真命題的是( )
A.p∧q
B.(¬p)∧q
C.p∧(¬q)
D.(¬p)∧(¬q)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com