A. | {4,5,6,7} | B. | {4,5,6} | C. | {3,4,5,6} | D. | {3,4,5,6,7} |
分析 先求出圓的圓心和半徑,根據(jù)圓的幾何性質(zhì)計算出過點(${\frac{5}{2}$,$\frac{3}{2}}$)的最短弦長和最長弦長,即等差數(shù)列的第一項和第n項,再根據(jù)等差數(shù)列的公差d∈[${\frac{1}{6}$,$\frac{1}{3}}$],求出n的取值集合.
解答 解:將圓x2+y2=5x轉(zhuǎn)化成標(biāo)準(zhǔn)方程:(x-$\frac{5}{2}$)2+y2=$\frac{25}{4}$,則圓心為C($\frac{5}{2}$,0),半徑為r=$\frac{5}{2}$,
過點P(${\frac{5}{2}$,$\frac{3}{2}}$)最短弦的弦長為a1=2 $\sqrt{{r}^{2}-丨PC{丨}^{2}}$=4
過點P ${\frac{5}{2}$,$\frac{3}{2}}$)最長弦長為圓的直徑長an=5,
∴4+(n-1)d=5,
d=$\frac{1}{n-1}$,
∵d∈[${\frac{1}{6}$,$\frac{1}{3}}$],
∴${\frac{1}{6}$<$\frac{1}{n-1}$<$\frac{1}{3}}$,
∴4≤n≤7.
∴n的取值為:4,5,6,7
故選A.
點評 本題考查橢圓的方程和性質(zhì),以及等差數(shù)列的通項公式等知識,解題時要學(xué)會使用橢圓的幾何性質(zhì)解決橢圓的弦長問題,考查計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com