x | -$\frac{π}{6}$ | $\frac{π}{3}$ | $\frac{5π}{6}$ | $\frac{4π}{3}$ | $\frac{11π}{6}$ |
ωx+φ | -$\frac{π}{2}$ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ |
y | -1 | 1 | 3 | 1 | -1 |
分析 (1)由表中的最大值和最小值可得A的值,通過$\frac{11π}{6}-(-\frac{π}{6})$=T,可求ω.根據(jù)對稱中點坐標(biāo)可知B=1,圖象過(-$\frac{π}{6},-1$)帶入求解φ,可得函數(shù)f(x)的解析式.
(2)當(dāng)$x∈[{\frac{π}{3},π}]$時,求解內(nèi)層的范圍,結(jié)合三角函數(shù)的圖象,數(shù)形結(jié)合法,f(x)=m恰有兩個不同的解,轉(zhuǎn)化為f(x)與y=m圖象有兩個交點的問題求解即可求實數(shù)m的取值范圍.
解答 解:由表中的最大值為3,最小值為-1,可得A=$\frac{3-(-1)}{2}=2$,
由$\frac{11π}{6}-(-\frac{π}{6})$=T,則T=2π.
∴$ω=\frac{2π}{T}=1$,
∵y=2sin(ωx+φ)的最大值是2,故得B=3-2=1.
此時函數(shù)f(x)=2sin(x+φ)+1.
∵圖象過(-$\frac{π}{6},-1$)帶入可得:-1=2sin($-\frac{π}{6}$+φ)+1,
可得:φ$-\frac{π}{6}$=-$\frac{π}{2}+2kπ$,(k∈Z).
解得:φ=$2kπ-\frac{π}{3}$,
∵$-\frac{π}{2}<$φ$<\frac{π}{2}$,
∴φ=-$\frac{π}{3}$.
故得函數(shù)f(x)的解析式為f(x)=2sin(x-$\frac{π}{3}$)+1
(2)當(dāng)$x∈[{\frac{π}{3},π}]$時,
則x-$\frac{π}{3}$∈[0,$\frac{2π}{3}$],
令u=x-$\frac{π}{3}$,u∈[0,$\frac{2π}{3}$],
則y=2sinu+1的圖象與與y=m圖象有兩個交點.
從圖象可以看出:
當(dāng)x=$\frac{2π}{3}$時,函數(shù)f($\frac{2π}{3}$)=$\sqrt{3}+1$,
y=2sinu+1的圖象與與y=m圖象有兩個交點.
那么:$3>m≥\sqrt{3}+1$.
∴實數(shù)m的取值范圍是[$\sqrt{3}+1$,3)
點評 本題主要考查三角函數(shù)的圖象和性質(zhì),根據(jù)圖象求出函數(shù)的解析式是解決本題的關(guān)鍵.要求熟練掌握函數(shù)圖象之間的變化關(guān)系.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-5,7) | B. | [-3,7) | C. | (-3,7) | D. | (-5,7) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x^2}{3}+{y^2}=1$ | B. | $\frac{x^2}{3}+\frac{y^2}{2}=1$ | C. | $\frac{x^2}{12}+\frac{y^2}{4}=1$ | D. | $\frac{x^2}{12}+\frac{y^2}{8}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向左平移$\frac{π}{4}$個單位,再向上平移1個單位 | |
B. | 向右平移$\frac{π}{4}$個單位,再向上平移1個單位 | |
C. | 向左平移$\frac{π}{2}$個單位,再向下平移1個單位 | |
D. | 向右平移$\frac{π}{2}$個單位,再向上平移1個單位 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com