Processing math: 100%
15.設(shè)向量a=12b=m1,若向量a+2b2ab平行,則m=-12

分析 根據(jù)平面向量的坐標(biāo)運(yùn)算與共線定理,列出方程求出m的值.

解答 解:向量a=12b=m1,
a+2b=(2m-1,4),
2ab=(-2-m,3);
若向量a+2b2ab平行,
則3(2m-1)-4(-2-m)=0,
解得m=-12
故答案為:-12

點(diǎn)評 本題考查了平面向量的坐標(biāo)運(yùn)算與共線定理的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在四棱錐P-ABCD中,AD∥BC,AB⊥AD,AB⊥PA,BC=2AB=2AD=4BE,平面PAB⊥平面ABCD.
(1)求證:直線ED⊥平面PAC;
(2)若直線PE與平面PAC所成的角的正弦值為55,求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.某同學(xué)從區(qū)間[-1,1]隨機(jī)抽取2n個(gè)數(shù)x1,x2,…,xn,y1,y2,…,yn,構(gòu)成n個(gè)數(shù)對(x1,y1),(x2,y2),…(xn,yn),該同學(xué)用隨機(jī)模擬的方法估計(jì)n個(gè)數(shù)對中兩數(shù)的平方和小于1(即落在以原點(diǎn)為圓心,1為半徑的圓內(nèi))的個(gè)數(shù),則滿足上述條件的數(shù)對約有nπ4個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,4)、B(5,-2)、C(1,2),求:
(1)邊BC中點(diǎn)D的坐標(biāo);
(2)BC邊上中線AD的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)銳角△ABC的三個(gè)內(nèi)角為A,B,C,其中角B的大小為π6,則cosA+sinC的取值范圍為(32,32).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)fx={x2+x+1x02x+1x0,若f(sinα+sinβ+sinr-1)=-1,f(cosα+cosβ+cosr+1)=3,則cos(α-β)+cos(β-r)的值為(  )
A.1B.2C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖所示,是一個(gè)組合體的三視圖,圖中四邊形是邊長為2的正方形,圓的直徑為2,那么這個(gè)組合體的表面積是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在單調(diào)遞增的等差數(shù)列{an}中,a3,a7,a15成等比數(shù)列,前5項(xiàng)之和等于20.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=2anan+1,記數(shù)列{bn}的前n項(xiàng)和為Tn,求使Tn2425成立的n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓Cx216+y27=1,F(xiàn)為橢圓的右焦點(diǎn),B為橢圓的上頂點(diǎn),P是橢圓上一動點(diǎn).
(1)求|OP|2+|PF|2的取值范圍
(2)已知直線l:x+y=1,點(diǎn)P到直線l的距離為d,求d的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案