6.已知拋物線C:y2=4x的焦點(diǎn)為F,準(zhǔn)線為l.⊙F與C交于A,B兩點(diǎn),與x軸的負(fù)半軸交于點(diǎn)P.
(Ⅰ)若⊙F被l所截得的弦長(zhǎng)為$2\sqrt{5}$,求|AB|;
(Ⅱ)判斷直線PA與C的交點(diǎn)個(gè)數(shù),并說明理由.

分析 (Ⅰ)若⊙F被l所截得的弦長(zhǎng)為$2\sqrt{5}$,求出圓的半徑,得到圓的方程,即可求|AB|;
(Ⅱ)求出P的坐標(biāo),即可判斷直線PA與C的交點(diǎn)個(gè)數(shù),

解答 解:(Ⅰ)拋物線C:y2=4x的焦點(diǎn)為F(1,0),
∵⊙F被l所截得的弦長(zhǎng)為$2\sqrt{5}$,
∴圓的半徑為$\sqrt{5+4}$=3,
∴⊙F的方程為(x-1)2+y2=9,
與y2=4x聯(lián)立可得A(2,2$\sqrt{2}$),B(2,-2$\sqrt{2}$),∴|AB|=4$\sqrt{2}$;
(Ⅱ)(x-1)2+y2=9,令y=0,可得P(4,0),
∵A(2,2$\sqrt{2}$),∴直線PA與C的交點(diǎn)個(gè)數(shù)為2.

點(diǎn)評(píng) 本題考查圓的方程,考查拋物線的方程與性質(zhì),考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在四棱錐P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點(diǎn),PA=2,AB=1.
(1)求證:CE∥平面PAB;
(2)求三棱錐P-ACE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在幾何體A1B1C1-ABC中,△ABC為等邊三角形,AA1⊥平面ABC,AA1∥BB1∥CC1,BB1:CC1:AA1=3:2:1
(Ⅰ)求證:平面A1B1C1⊥平面A1ABB1
(Ⅱ)F為線段BB1上一點(diǎn),當(dāng)A1B1∥平面ACF時(shí),求$\frac{{B}_{1}F}{{B}_{1}B}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=xlnx.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(Ⅱ)若f(x)≥m+$\frac{4}{m}$-k對(duì)任意的m∈[3,5]恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=x2eax
(Ⅰ)當(dāng)a<0時(shí),討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)在(1)條件下,求函數(shù)f(x)在區(qū)間[0,1]上的最大值;
(Ⅲ)設(shè)函數(shù)g(x)=2ex-$\frac{lnx}{x}$,求證:當(dāng)a=1,對(duì)?x∈(0,1),g(x)-xf(x)>2恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓C:x2+4y2=4.
(1)求橢圓C的離心率;
(2)橢圓C的長(zhǎng)軸的兩個(gè)端點(diǎn)分別為A,B,點(diǎn)P在直線x=1上運(yùn)動(dòng),直線PA,PB分別與橢圓C相交于M,N兩個(gè)不同的點(diǎn),求證:直線MN與x軸的交點(diǎn)為定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,四棱柱ABCD-A1B1C1D1中,底面ABCD為菱形,AA1⊥底面ABCD,E為B1D的中點(diǎn).
(Ⅰ)證明:平面ACE⊥平面ABCD;
(Ⅱ)若AA1=AB=1,點(diǎn)C到平面AED的距離為$\frac{{\sqrt{2}}}{2}$,求三棱錐C-AED的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知向量$\overrightarrow{a}$=(m,2),$\overrightarrow$=(2,-1),且$\overrightarrow{a}$⊥$\overrightarrow$,則$\frac{|2\overrightarrow{a}-\overrightarrow|}{\overrightarrow{a}•(\overrightarrow{a}+\overrightarrow)}$等于( 。
A.$-\frac{5}{3}$B.1C.2D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知定義域?yàn)?[{\frac{1}{3},3}]$的函數(shù)f(x)滿足:當(dāng)$x∈[{\frac{1}{3},1}]$時(shí),$f(x)=2f(\frac{1}{x})$,且當(dāng)x∈[1,3]時(shí),f(x)=lnx,若在區(qū)間$[{\frac{1}{3},3}]$內(nèi),函數(shù)g(x)=f(x)-ax的圖象與x軸有3個(gè)不同的交點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.$(0,\frac{1}{e})$B.$(0,\frac{1}{2e})$C.$[\frac{ln3}{3},\frac{1}{e})$D.$[\frac{ln3}{3},1)$

查看答案和解析>>

同步練習(xí)冊(cè)答案