13.已知函數(shù)f(x)的圖象是由函數(shù)g(x)=cosx的圖象經(jīng)如下變換得到:現(xiàn)將g(x)圖象上所有點(diǎn)的縱坐標(biāo)伸長到原來的2倍,(橫坐標(biāo)不變),再講所得的圖象向右平移$\frac{π}{2}$個單位長度.
(1)求函數(shù)f(x)的解析式,并求其圖象的對稱軸的方程;
(2)已知關(guān)于x的方程f(x)+g(x)=m在[0,2π]內(nèi)有兩個不同的解α,β,
①求實(shí)數(shù)m的取值范圍.
②證明:cos(α-β)=$\frac{2{m}^{2}}{5}$-1.

分析 (1)由函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律可得:f(x)=2sinx,從而可求對稱軸方程.
(2)①由三角函數(shù)中的恒等變換應(yīng)用化簡解析式可得f(x)+g(x)=$\sqrt{5}$sin(x+φ)(其中sinφ=$\frac{1}{\sqrt{5}}$,cosφ=$\frac{2}{\sqrt{5}}$),從而可求|$\frac{m}{\sqrt{5}}$|<1,即可得解.
②由題意可得sin(α+φ)=$\frac{m}{\sqrt{5}}$,sin(β+φ)=$\frac{m}{\sqrt{5}}$.當(dāng)1≤m<$\sqrt{5}$時,可求α-β=π-2(β+φ),當(dāng)-$\sqrt{5}$<m<0時,可求α-β=3π-2(β+φ),由cos(α-β)=2sin2(β+φ)-1,從而得證.

解答 解:(1)將g(x)=cosx的圖象上所有點(diǎn)的縱坐標(biāo)伸長到原來的2倍(橫坐標(biāo)不變)得到y(tǒng)=2cosx的圖象,再將y=2cosx的圖象向右平移$\frac{π}{2}$個單位長度后得到y(tǒng)=2cos(x-$\frac{π}{2}$)的圖象,故f(x)=2sinx,
從而函數(shù)f(x)=2sinx圖象的對稱軸方程為x=kπ+$\frac{π}{2}$(k∈Z).
(2)①f(x)+g(x)=2sinx+cosx=$\sqrt{5}$($\frac{2}{\sqrt{5}}$sinx+$\frac{1}{\sqrt{5}}$cosx)
=$\sqrt{5}$sin(x+φ)(其中sinφ=$\frac{1}{\sqrt{5}}$,cosφ=$\frac{2}{\sqrt{5}}$)
依題意,sin(x+φ)=$\frac{m}{\sqrt{5}}$在區(qū)間[0,2π)內(nèi)有兩個不同的解α,β,
當(dāng)且僅當(dāng)|$\frac{m}{\sqrt{5}}$|<1,故m的取值范圍是(-$\sqrt{5}$,$\sqrt{5}$).
②證明:因?yàn)棣,β是方?\sqrt{5}$sin(x+φ)=m在區(qū)間[0,2π)內(nèi)的兩個不同的解,
所以sin(α+φ)=$\frac{m}{\sqrt{5}}$,sin(β+φ)=$\frac{m}{\sqrt{5}}$.
當(dāng)1≤m<$\sqrt{5}$時,α+β=2($\frac{π}{2}$-φ),即α-β=π-2(β+φ);
當(dāng)-$\sqrt{5}$<m<1時,α+β=2($\frac{3π}{2}$-φ),即α-β=3π-2(β+φ);
所以cos(α-β)=-cos2(β+φ)=2sin2(β+φ)-1=2($\frac{m}{\sqrt{5}}$)2-1=$\frac{2{m}^{2}}{5}$-1.

點(diǎn)評 本題主要考查三角函數(shù)的圖象與性質(zhì)、三角恒等變換等基礎(chǔ)知識,考查運(yùn)算求解能力、抽象概括能力、推理論證能力,考查函數(shù)與方程思想、分類與整體思想、化歸與轉(zhuǎn)化思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在△ABC中,D為三角形所在平面內(nèi)的一點(diǎn),且$\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AC}$;則$\frac{{S}_{△BCD}}{{S}_{△ACD}}$=(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.某校組織學(xué)生假期游學(xué)活動.設(shè)計(jì)了兩條路線:A路線為“山西尋根之旅“,B路線為“齊魯文化之旅”,現(xiàn)調(diào)査了50名學(xué)生的游學(xué)意愿.有如下結(jié)果:選擇A路線的人數(shù)是全體的五分之三.選擇B路線的人數(shù)比選擇A路線的人數(shù)多3;另外,兩條路線A,B都不選擇的學(xué)生人數(shù)比兩條路線A,B都選擇的人數(shù)的三分之一多3.則兩條路線A,B都不選擇的學(xué)生人數(shù)為( 。
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.過圓x2+y2-x+y-2=0和x2+y2=5交點(diǎn)的直線方程為x-y-3=0.(一般式方程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=x3-x2+a,
 (1)求f(x)的極值;
(2)當(dāng)a在什么范圍內(nèi)取值時,曲線與x軸僅有一個交點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知a>b>0,則$\frac{a}$與$\frac{a+1}{b+1}$的大小是$\frac{a}$>$\frac{a+1}{b+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若樣本x1+1,x2+1,…,xn+1的平均數(shù)為10,其方差為2,則樣本x1+2,x2+2,…,xn+2的平均數(shù)為11,方差為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)集合A={-1,0,1,2,3},B={x|x2-3x>0},則A∩(∁RB)=( 。
A.{-1}B.{0,1,2}C.{1,2,3}D.{0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.為調(diào)查了解某高等院校畢業(yè)生參加T作后,從事的T作與大學(xué)所學(xué)專業(yè)是否專業(yè)對口,該校隨機(jī)調(diào)查了80位該校2015年畢業(yè)的大學(xué)生,得到具體數(shù)據(jù)如表:
專業(yè)對口專業(yè)不對口合計(jì)
301040
35540
合計(jì)651580
(1)能否在犯錯誤的概率不超過5%的前提下,認(rèn)為“畢業(yè)生從事的工作與大學(xué)所學(xué)專業(yè)對口與性別有關(guān)”?
參考公式:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(n=a+b+c+d).
附表:
P(K)0.500.400.250.150.100.050.0250.010
0.4550.7081.3232.0722.3063.8415.0216.635
(2)求這80位畢業(yè)生從事的工作與大學(xué)所學(xué)專業(yè)對口的頻率,并估計(jì)該校近3年畢業(yè)的2000名大學(xué)生中從事的工作與大學(xué)所學(xué)專業(yè)對口的人數(shù);
(3)若從工作與所學(xué)專業(yè)不對口的15人中選出男生甲、乙,女生丙、丁,讓他們兩兩進(jìn)行一次10分鐘的職業(yè)交流,該校宣傳部對每次交流都一一進(jìn)行視頻記錄,然后隨機(jī)選取一次交流視頻上傳到學(xué)校的網(wǎng)站,試求選取的視頻恰為異性交流視頻的概率.

查看答案和解析>>

同步練習(xí)冊答案