18.已知a>b>0,則$\frac{a}$與$\frac{a+1}{b+1}$的大小是$\frac{a}$>$\frac{a+1}{b+1}$.

分析 作差即可比較出大小.

解答 解:$\frac{a}$-$\frac{a+1}{b+1}$=$\frac{a(b+1)-b(a+1)}{b(b+1)}$=$\frac{a-b}{b(b+1)}$,
∵a>b>0,
∴a-b>0,b(b+1)>0,
∴$\frac{a}$-$\frac{a+1}{b+1}$>0,
∴$\frac{a}$>$\frac{a+1}{b+1}$,
故答案為:$\frac{a}$>$\frac{a+1}{b+1}$

點(diǎn)評(píng) 本題考查了“作差法”比較兩個(gè)數(shù)的大小,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知復(fù)數(shù)z=$\frac{2+ai}{1+2i}$,其中a為整數(shù),且z在復(fù)平面對(duì)應(yīng)的點(diǎn)在第四象限,則a的最大值等于( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{1-{x}^{3},x>0}\\{{2}^{x},x≤0}\end{array}\right.$,則f(f(-1))=$\frac{7}{8}$,f(x)的值域?yàn)椋?∞,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若函數(shù)f(x)=-x3+ax2+bx-7在R上單調(diào)遞減,則實(shí)數(shù)a,b一定滿足條件( 。
A.a2+3b≤0B.a2+3b<0C.a2+3b>0D.a2+3b=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)的圖象是由函數(shù)g(x)=cosx的圖象經(jīng)如下變換得到:現(xiàn)將g(x)圖象上所有點(diǎn)的縱坐標(biāo)伸長到原來的2倍,(橫坐標(biāo)不變),再講所得的圖象向右平移$\frac{π}{2}$個(gè)單位長度.
(1)求函數(shù)f(x)的解析式,并求其圖象的對(duì)稱軸的方程;
(2)已知關(guān)于x的方程f(x)+g(x)=m在[0,2π]內(nèi)有兩個(gè)不同的解α,β,
①求實(shí)數(shù)m的取值范圍.
②證明:cos(α-β)=$\frac{2{m}^{2}}{5}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列說法正確的是( 。
A.三角形的內(nèi)角是第一象限角或第二象限角
B.第一象限的角是銳角
C.第二象限的角比第一象限的角大
D.角α是第四象限角的充要條件是$2kπ-\frac{π}{2}<α<2kπ(k∈z)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在復(fù)平面內(nèi),復(fù)數(shù)z=1-i對(duì)應(yīng)的向量為$\overrightarrow{OP}$,復(fù)數(shù)z2對(duì)應(yīng)的向量為$\overrightarrow{OQ}$,那么向量$\overrightarrow{PQ}$對(duì)應(yīng)的復(fù)數(shù)為( 。
A.1-iB.1+iC.-1+iD.-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.方程$\frac{x^2}{m-2}+\frac{y^2}{m+3}=1$表示雙曲線的一個(gè)充分不必要條件是( 。
A.-3<m<0B.-3<m<2C.-3<m<4D.-1<m<3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.閱讀下列程序,輸出的結(jié)果為22.

查看答案和解析>>

同步練習(xí)冊(cè)答案