11.設(shè)函數(shù)f(x)=a2lnx+ax(a≠0),g(x)=${∫}_{0}^{x}$2tdt,F(xiàn)(x)=g(x)-f(x).
(1)試討論F(x)的單調(diào)性;
(2)當(dāng)a>0時(shí),-e2≤F(x)≤1-e在x∈[1,e]恒成立,求實(shí)數(shù)a的取值.

分析 (1)求出g(x)的解析式,求出函數(shù)的導(dǎo)數(shù),通過(guò)討論a的范圍,求出函數(shù)的單調(diào)區(qū)間即可;
(2)求出函數(shù)的單調(diào)性,得到關(guān)于a的不等式組,解出即可.

解答 解:(1)由題意得:g(x)=${∫}_{0}^{x}$2tdt=x2,
∴F(x)=g(x)-f(x)=x2-a2lnx-ax(x>0),
F′(x)=2x-$\frac{{a}^{2}}{x}$-a=$\frac{(x-a)(2x+a)}{x}$,
a>0時(shí),x∈(0,a)時(shí),F(xiàn)(x)<0,x∈(a,+∞)時(shí),F(xiàn)(x)>0,
∴函數(shù)F(x)在(0,a)遞減,在區(qū)間(a,+∞)遞增;
a<0時(shí),x∈(0,-$\frac{a}{2}$)時(shí),F(xiàn)(x)<0,x∈(-$\frac{a}{2}$,+∞)時(shí),F(xiàn)(x)>0,
∴函數(shù)F(x)在區(qū)間(0,-$\frac{a}{2}$)遞減,在(-$\frac{a}{2}$,+∞)遞增,
綜上,a>0時(shí),函數(shù)F(x)在區(qū)間(0,a)遞減,在(a,+∞)遞增;
a<0時(shí),函數(shù)F(x)在區(qū)間(0,-$\frac{a}{2}$)遞減,在區(qū)間(-$\frac{a}{2}$,+∞)遞增;
(2)由題意得F(1)=g(1)-f(1)=1-a≤1-e,即a≥e,
當(dāng)a>0時(shí),由(1)得F(x)在[1,e]內(nèi)遞減,
故要使-e2≤F(x)≤1-e在x∈[1,e]恒成立,
只需$\left\{\begin{array}{l}{F(1)≤1-e}\\{F(e)≥{-e}^{2}}\end{array}\right.$,即$\left\{\begin{array}{l}{1-a≤1-e}\\{{e}^{2}{-a}^{2}ae≥{-e}^{2}}\end{array}\right.$,
即$\left\{\begin{array}{l}{a≥e}\\{a≤e}\end{array}\right.$,即a=e.

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)公式以及運(yùn)算,用導(dǎo)數(shù)求函數(shù)的單調(diào)性、導(dǎo)數(shù)求最值、求參數(shù)范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)=sin(2x+$\frac{π}{6}$),如果x1、x2∈(-$\frac{π}{12}$,$\frac{5π}{12}$),且滿足x1≠x2,f(x1)=f(x2),則f(x1+x2)=( 。
A.1B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.函數(shù)$f(x)={log_2}({x^2}-4)$的單調(diào)遞增區(qū)間為(  )
A.(0,+∞)B.(-∞,0)C.(2,+∞)D.(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.定義域?yàn)镽的函數(shù)f(x)=$\left\{\begin{array}{l}{|lg(-x)|,x<0}\\{1-(\frac{1}{2})^{x},x≥0}\end{array}\right.$,若關(guān)于x的函數(shù)y=3f2(x)+2bf(x)+1有6個(gè)不同的零點(diǎn),則實(shí)數(shù)b的取值范圍是( 。
A.(-2,-$\sqrt{3}$)B.(-2,0)C.(-3,-$\sqrt{3}$)D.(-$\sqrt{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若函數(shù)f(x)滿足f(x)=x(f′(x)-lnx),且f($\frac{1}{e}$)=$\frac{1}{e}$,則ef(ex)<f′($\frac{1}{e}$)+1的解集是(  )
A.(-∞,-1)B.(-1,+∞)C.(0,$\frac{1}{e}$)D.($\frac{1}{e}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知數(shù)列{an}的前n項(xiàng)和${S_n}={n^2}+kn$,其中k為常數(shù),a1,a4,a13成等比數(shù)列.
(1)求k的值及數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)${b_n}=\frac{4}{{({a_n}+1)({a_{n+1}}+3)}}$,數(shù)列{bn}的前n項(xiàng)和為Tn,證明:${T_n}<\frac{5}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.從區(qū)間(0,1)中任取兩個(gè)數(shù),作為直角三角形兩直角邊的長(zhǎng),則所得的兩個(gè)數(shù)列使得斜邊長(zhǎng)不大于1的概率是( 。
A.$\frac{π}{8}$B.$\frac{π}{4}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=mln(x+1)-nx在點(diǎn)(1,f(1))處的切線與y軸垂直,且$f'(2)=-\frac{1}{3}$,其中 m,n∈R.
(Ⅰ)求m,n的值,并求出f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)g(x)=-x2+2x,確定非負(fù)實(shí)數(shù)a的取值范圍,使不等式f(x)+x≥ag(x)在[0,+∞)上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)a∈R,“1,a,16為等比數(shù)列”是“a=4”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案