【題目】某公司的營(yíng)銷部門對(duì)某件商品在網(wǎng)上銷售情況進(jìn)行調(diào)查,發(fā)現(xiàn)當(dāng)這件商品每回饋消費(fèi)者一定的點(diǎn)數(shù),該商品每天的銷量就會(huì)發(fā)生一定的變化,經(jīng)過(guò)統(tǒng)計(jì)得到以下表:

1)經(jīng)分析發(fā)現(xiàn),可用線性回歸模型擬合該商品銷量(百件)與返還點(diǎn)數(shù)之間的相關(guān)關(guān)系.請(qǐng)用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測(cè)若返回6個(gè)點(diǎn)時(shí)該商品每天銷量;

2)該公司為了在購(gòu)物節(jié)期間對(duì)所有商品價(jià)格進(jìn)行新一輪調(diào)整,隨機(jī)抽查了上一年購(gòu)物節(jié)期間60名網(wǎng)友的網(wǎng)購(gòu)金額情況,得到如下數(shù)據(jù)統(tǒng)計(jì)表:

網(wǎng)購(gòu)金額

(單位:千元)

合計(jì)

頻數(shù)

3

9

9

15

18

6

60

若網(wǎng)購(gòu)金額超過(guò)2千元的顧客定義為“網(wǎng)購(gòu)達(dá)人”,網(wǎng)購(gòu)金額不超過(guò)2千元的顧客定義為“非網(wǎng)購(gòu)達(dá)人”.該營(yíng)銷部門為了進(jìn)步了解這60名網(wǎng)友的購(gòu)物體驗(yàn),從“非網(wǎng)購(gòu)達(dá)人”、“網(wǎng)購(gòu)達(dá)人”中用分層抽樣的方法確定10人,若需從這10人中隨機(jī)選取3人進(jìn)行問(wèn)卷調(diào)查.設(shè)為選取的3人中“網(wǎng)購(gòu)達(dá)人”的人數(shù),求的分布列和數(shù)學(xué)期望.

參考公式及數(shù)據(jù):①,;②.

【答案】1,返回6個(gè)點(diǎn)時(shí)該商品每天銷量約為件;(2)分布列見(jiàn)解析,

【解析】

1)利用已知條件,求出線性回歸的對(duì)稱中心的坐標(biāo),然后求解回歸直線方程,,通過(guò)返回6個(gè)點(diǎn)時(shí)求解該商品每天銷量;

2)首先求出“非網(wǎng)購(gòu)達(dá)人”、“網(wǎng)購(gòu)達(dá)人”的人數(shù),再求出分別抽出的人數(shù),最后列出分布列求出數(shù)學(xué)期望;

解:(1)易知,

,

,

關(guān)于的線性回歸方程為,

當(dāng)時(shí),,即返回6個(gè)點(diǎn)時(shí)該商品每天銷量約為

2)由統(tǒng)計(jì)表可知,非網(wǎng)購(gòu)達(dá)人人、網(wǎng)購(gòu)達(dá)人人;現(xiàn)按照分層抽樣從中抽取人,則非網(wǎng)購(gòu)達(dá)人被抽取的有(人)、網(wǎng)購(gòu)達(dá)人被抽取的有(人);

現(xiàn)需從這10人中隨機(jī)選取3人進(jìn)行問(wèn)卷調(diào)查.設(shè)為選取的3人中網(wǎng)購(gòu)達(dá)人的人數(shù),則的可能取值為、、,

,,,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若,若的單調(diào)區(qū)間;

2)當(dāng)時(shí),若存在唯一的零點(diǎn),且,其中,求.

(參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在三棱柱中,平面是線段上的動(dòng)點(diǎn),是線段上的中點(diǎn).

(Ⅰ)證明:

(Ⅱ)若,且直線所成角的余弦值為,試指出點(diǎn)在線段上的位置,并求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在對(duì)人們的休閑方式的一次調(diào)查中,共調(diào)查了124人,其中女性70人,男性54.女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運(yùn)動(dòng);男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運(yùn)動(dòng).

1)根據(jù)以上數(shù)據(jù)建立一個(gè)2×2的列聯(lián)表;并估計(jì),以運(yùn)動(dòng)為主的休閑方式的人的比例;

2)能否在犯錯(cuò)誤的概率不超過(guò)0.025的前提下,認(rèn)為性別與休閑方式有關(guān)系?

附表:

PK2k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

K2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在棱長(zhǎng)為的正方體中,點(diǎn)、分別為棱、、的中點(diǎn),經(jīng)過(guò)、三點(diǎn)的平面為,平面被此正方體所截得截面圖形的周長(zhǎng)為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于的方程上恰有3個(gè)解,存在,使不等式成立.

(1)若為真命題,求正數(shù)的取值范圍;

(2)若為真命題,且為假命題,求正數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)為了檢查生產(chǎn)產(chǎn)品的甲、乙兩條流水線的生產(chǎn)情況,隨機(jī)地從這兩條流水線上生產(chǎn)的大量產(chǎn)品中各抽取50件產(chǎn)品作為樣本,測(cè)出它們的這一項(xiàng)質(zhì)量指標(biāo)值.若該項(xiàng)質(zhì)量指標(biāo)值落在內(nèi),則為合格品,否則為不合格品.下表是甲流水線樣本的頻數(shù)分布表,下圖是乙流水線樣本的頻率分布直方圖.

甲流水線樣本的頻數(shù)分布表

質(zhì)量指標(biāo)值

頻數(shù)

9

10

17

8

6

乙流水線樣本的頻率分布直方圖

1)根據(jù)圖形,估計(jì)乙流水線生產(chǎn)的產(chǎn)品的該項(xiàng)質(zhì)量指標(biāo)值的中位數(shù);

2)設(shè)該企業(yè)生產(chǎn)一件合格品獲利100元,生產(chǎn)一件不合格品虧損50元,若某個(gè)月內(nèi)甲、乙兩條流水線均生產(chǎn)了1000件產(chǎn)品,若將頻率視為概率,則該企業(yè)本月的利潤(rùn)約為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,平面平面,為等邊三角形,,,,點(diǎn)的中點(diǎn).

1)求證:平面PAD;

2)求二面角PBCD的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)在點(diǎn)處的切線與y軸垂直.

1)若,求的單調(diào)區(qū)間;

2)若成立,求a的取值范圍

查看答案和解析>>

同步練習(xí)冊(cè)答案