分析 (I)將點(diǎn)代入拋物線方程求得p,求得焦點(diǎn)坐標(biāo),代入橢圓方程,即可求得a和b的值,求得橢圓C1的方程;
(II)方法一:設(shè)直線AC的方程為x=my+1,代入橢圓方程,利用韋達(dá)定理及中點(diǎn)坐標(biāo)公式,求得G,求得OG,代入橢圓方程求得B點(diǎn)坐標(biāo),利用點(diǎn)到直線的距離公式,SOABC=$\frac{1}{2}$|AC|(d1+d2),利用函數(shù)單調(diào)性即可求得四邊形OABC的面積S的最小值;
方法二:當(dāng)直線斜率不存在時(shí),直線AC方程x=1,此時(shí)四邊形OABC的面積S=$\frac{3}{2}$×2=3,當(dāng)直線AC的斜率存在時(shí),代入橢圓方程,利用韋達(dá)定理及中點(diǎn)坐標(biāo)公式,求得G,求得OG,代入橢圓方程求得B點(diǎn)坐標(biāo),利用點(diǎn)到直線的距離公式,SOABC=$\frac{1}{2}$|AC|(d1+d2),利用函數(shù)單調(diào)性即可求得四邊形OABC的面積S的最小值;
解答 解:(I)∵將($\frac{2}{3}$,$\frac{2}{3}$$\sqrt{6}$)代入拋物線方程,
解得:p=2,
∴y2=4x,
∴橢圓C1的右焦點(diǎn)為(1,0),
∴$\left\{\begin{array}{l}{a^2}-{b^2}=1\\ \frac{{\frac{4}{9}}}{a^2}+\frac{{\frac{24}{9}}}{b^2}=1\end{array}\right.$,
∴$橢圓{C_1}的標(biāo)準(zhǔn)方程為:\frac{x^2}{4}+\frac{y^2}{3}=1$;
(II)方法一:設(shè)A(x1,y1),C(x2,y2),G(x0,y0).
設(shè)直線AC的方程為x=my+1,
$\left\{\begin{array}{l}{x=my+1}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,整理得:(4+3m2)y2+6my-9=0,
∴y1+y2=-$\frac{6m}{4+3{m}^{2}}$,y1y2=-$\frac{9}{4+3{m}^{2}}$,
由弦長公式可得|AC|=$\sqrt{1+{m}^{2}}$|y1-y2|=$\sqrt{1+{m}^{2}}$×$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\frac{12(1+{m}^{2})}{4+3{m}^{2}}$,
又y0=$\frac{{y}_{1}+{y}_{2}}{2}$=-$\frac{3m}{4+3{m}^{2}}$,x0=my0+1=$\frac{4}{3{m}^{2}+4}$,
∴G($\frac{4}{3{m}^{2}+4}$,-$\frac{3m}{4+3{m}^{2}}$),
直線OG的方程為y=-$\frac{3m}{4}$x,代入橢圓方程得x2=$\frac{16}{4+3{m}^{2}}$,
∴B($\frac{4}{\sqrt{4+3{m}^{2}}}$,-$\frac{3m}{\sqrt{4+3{m}^{2}}}$),
B到直線AC的距離d1=$\frac{\sqrt{4+3{m}^{2}}-1}{1+{m}^{2}}$,
O到直線AC的距離d2=$\frac{1}{\sqrt{1+{m}^{2}}}$,
∴SOABC=$\frac{1}{2}$|AC|(d1+d2)=$\frac{1}{2}$×$\frac{12(1+{m}^{2})}{4+3{m}^{2}}$×$\frac{\sqrt{4+3{m}^{2}}}{\sqrt{1+{m}^{2}}}$=6×$\sqrt{\frac{1+{m}^{2}}{4+3{m}^{2}}}$=6$\sqrt{\frac{1}{3}-\frac{1}{3(4+3{m}^{2})}}$≥3,
當(dāng)m=0時(shí)取得最小值3.
∴四邊形OABC的面積S的最小值3.
方法二:當(dāng)直線斜率不存在時(shí),直線AC方程x=1,此時(shí)四邊形OABC的面積S=$\frac{3}{2}$×2=3,
當(dāng)直線AC的斜率存在時(shí),設(shè)A(x1,y1),C(x2,y2),
直線AC:y=k(x-1),$\left\{\begin{array}{l}{y=k(x-1)}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,整理得:(3+4k2)x2-8k2x+4k2-12=0,
則x1+x2=$\frac{8{k}^{2}}{3+4{k}^{2}}$,x1x2=$\frac{4{k}^{2}-12}{3+4{k}^{2}}$,
xG=$\frac{{x}_{1}+{x}_{2}}{2}$=$\frac{4{k}^{2}}{3+4{k}^{2}}$,yG=k(xG-1)=$\frac{-3k}{3+4{k}^{2}}$,
則G($\frac{4{k}^{2}}{3+4{k}^{2}}$,$\frac{-3k}{3+4{k}^{2}}$),則OG:y=-$\frac{3}{4k}$x,
則$\left\{\begin{array}{l}{y=-\frac{3}{4k}x}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,解得:x2=$\frac{16{k}^{2}}{4{k}^{2}+3}$,
不妨設(shè)k>0,
則$\left\{\begin{array}{l}{{x}_{B}=\frac{4k}{\sqrt{3+4{k}^{2}}}}\\{{y}_{B}=\frac{-3}{\sqrt{3+4{k}^{2}}}}\end{array}\right.$,
則B到直線AC距離d1=$\frac{丨\sqrt{3+4{k}^{2}-k}丨}{\sqrt{1+{k}^{2}}}$=$\frac{\sqrt{3+4{k}^{2}}-k}{\sqrt{1+{k}^{2}}}$,
O到直線AC的距離d2=$\frac{k}{\sqrt{1+{k}^{2}}}$,
由弦長公式可知丨AC丨=$\sqrt{1+{k}^{2}}$$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{1+{k}^{2}}$$\sqrt{\frac{16(9{k}^{2}+9)}{(3+4{k}^{2})^{2}}}$,
=$\frac{12(1+{k}^{2})}{3+4{k}^{2}}$,
則SOABC=$\frac{1}{2}$|AC|(d1+d2)=$\frac{1}{2}$×$\frac{12(1+{k}^{2})}{3+4{k}^{2}}$×$\frac{\sqrt{3+4{k}^{2}}}{\sqrt{1+{k}^{2}}}$,
=6×$\sqrt{\frac{1+{k}^{2}}{3+4{k}^{2}}}$,
=6×$\sqrt{\frac{1}{4}+\frac{1}{4{(4k}^{2}+3)}}$>3,
綜上可知:當(dāng)直線AC垂直于x軸時(shí),四邊形OABC的面積S的最小值3.
點(diǎn)評 本題考查橢圓的標(biāo)準(zhǔn)方程及簡單幾何性質(zhì),考查直線與橢圓的位置關(guān)系,韋達(dá)定理,中點(diǎn)坐標(biāo)公式,點(diǎn)到直線的距離公式,弦長公式,考查函數(shù)的單調(diào)性與橢圓的綜合應(yīng)用,考查計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,0)∪(0,1) | B. | (-∞,1)∪(1,+∞) | C. | (-1,0)∪(1,+∞) | D. | (-∞,-1)∪(0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 26 | B. | 32 | C. | 36 | D. | 48 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com