分析 (1)由周期求出ω,由五點(diǎn)法作圖求出φ的值,可得函數(shù)的值域.
(2)利用正弦函數(shù)的定義域和值域,求得當(dāng)x∈(-$\frac{π}{2}$,0)時(shí),求函數(shù)的值域.
解答 解:(1)∵函數(shù)f(x)=2sin(ωx+φ)(ω>0,0≤φ≤π)的圖象經(jīng)過(guò)點(diǎn)P(-$\frac{π}{12}$,0),
與點(diǎn)P相鄰的最高點(diǎn)Q($\frac{π}{6}$,2),
∴$\frac{T}{4}$=$\frac{1}{4}•\frac{2π}{ω}$=$\frac{π}{6}$+$\frac{π}{12}$,∴ω=2.
再根據(jù)五點(diǎn)法作圖可得2•(-$\frac{π}{12}$)+φ=0,∴φ=$\frac{π}{6}$.
(2)由(1)可得f(x)=2sin(2x+$\frac{π}{6}$),
∵當(dāng)x∈(-$\frac{π}{2}$,0)時(shí),2x+$\frac{π}{6}$∈[-$\frac{5π}{6}$,$\frac{π}{6}$],∴sin(2x+$\frac{π}{6}$)∈[-1,$\frac{1}{2}$],
∴2sin(2x+$\frac{π}{6}$)∈[-2,1],即函數(shù)的值域?yàn)閇-2,1].
點(diǎn)評(píng) 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由周期求出ω,由五點(diǎn)法作圖求出φ的值,正弦函數(shù)的定義域和值域,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ?a,b∈R,如果ab<0,則a<0 | B. | ?a,b∈R,如果a≤0,則ab≤0 | ||
C. | ?a,b∈R,如果ab<0,則a<0 | D. | ?a,b∈R,如果a≤0,則ab≤0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $-\sqrt{3}$ | B. | $-\frac{{\sqrt{3}}}{3}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 1 | C. | 4 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com