分析 (1)清楚函數(shù)的導(dǎo)數(shù),利用導(dǎo)函數(shù)的對(duì)稱性以及極值點(diǎn),列出方程組求解即可.
(2)化簡(jiǎn)函數(shù)求出導(dǎo)函數(shù),求出極值點(diǎn),求出合適的極值,然后求解即可.
解答 解:(1)因f(x)=2x3+ax2+bx+1,故f'(x)=6x2+2ax+b, (1分)
因?yàn)閷?dǎo)函數(shù)y=f'(x)的圖象關(guān)于直線$x=-\frac{1}{2}$對(duì)稱,且x=1是f(x)的一個(gè)極值點(diǎn).
∴$\left\{\begin{array}{l}-\frac{2a}{12}=-\frac{1}{2}\\ 6+2a+b=0\end{array}\right.$ (4分)
解得$\left\{\begin{array}{l}a=3\\ b=-12\end{array}\right.$,經(jīng)檢驗(yàn)符合題意 (5分)
(2)由(1)知f(x)=2x3+3x2-12x+1,
令f'(x)=6x2+6x-12=0,解得x1=-2,x2=1, (7分)
x | (-∞,-2) | -2 | (-2,1) | 1 | (1,+∞) |
f'(x) | + | 0 | - | 0 | + |
f(x) | 單調(diào)遞增 | 21 | 單調(diào)遞減 | -6 | 單調(diào)遞增 |
點(diǎn)評(píng) 本題考查函數(shù)的導(dǎo)數(shù)的應(yīng)用,函數(shù)的極值以及函數(shù)的單調(diào)性的判斷,考查分析問(wèn)題解決問(wèn)題的能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 有最小值2-4$\sqrt{3}$ | B. | 有最大值2-4$\sqrt{3}$ | C. | 有最小值2+4$\sqrt{3}$ | D. | 有最大值2+4$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{3}{4}$ | B. | -$\frac{4}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com