20.假設(shè)一批產(chǎn)品中一、二、三等品各占60%、30%、10%,從中隨機(jī)取出一件,結(jié)果不是三等品,則取到的是一等品的概率為:$\frac{2}{3}$.

分析 根據(jù)一、二、三等品所占的比例計算即可.

解答 解:因?yàn)榻Y(jié)果不是三等品,所以問題等價于從一、二等品中隨意抽出一件為一等品的概率P,
P=$\frac{60%}{60%+30%}$=$\frac{2}{3}$;
故答案為:$\frac{2}{3}$.

點(diǎn)評 此題考查了互斥事件的概率加法公式,熟練掌握事件概率的求法是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知$\overrightarrow{a}$=(2,-1,4),$\overrightarrow$=(-4,-5,-1),若($\overrightarrow{a}$-k$\overrightarrow$)⊥$\overrightarrow$,則實(shí)數(shù)k=-$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)=x3-x2-x(0<x<2)極小值是( 。
A.0B.-1C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=2x3+ax2+bx+1,若其導(dǎo)函數(shù)y=f'(x)的圖象關(guān)于直線$x=-\frac{1}{2}$對稱,且x=1是f(x)的一個極值點(diǎn).
(1)求實(shí)數(shù)a,b的值;   
(2)若方程f(x)-k=0有3個實(shí)數(shù)根,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.曲線y=x3-3x2在x=1處的切線方程為( 。
A.3x+y-1=0B.3x+y+1=0C.3x-y-1=0D.3x-y+1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知ξ是離散型隨機(jī)變量,P(X=1)=$\frac{2}{3}$,P(X=a)=$\frac{1}{3}$且E(X)=$\frac{4}{3}$,則D(2X-1)等于$\frac{8}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.兩平行直線3x+4y-5=0和mx+8y+10=0的距離為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.sin $\frac{13}{6}$π的值是( 。
A.-$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知棱長為1的正方體ABCD-A1B1C1D1中,P,Q是面對角線A1C1上的兩個不同的動點(diǎn)(包括端點(diǎn)A1,C1).給出以下四個結(jié)論:
①存在P,Q兩點(diǎn),使BP⊥DQ;
②存在P,Q兩點(diǎn),使BP,DQ與直線B1C都成45°的角;
③若PQ=1,則四面體BDPQ的體積一定是定值;
④若PQ=1,則四面體BDPQ在該正方體六個面上的正投影的面積之和為定值.
以上各結(jié)論中,正確結(jié)論的是①③④.

查看答案和解析>>

同步練習(xí)冊答案