1.已知函數(shù)f(x)=|x+a|(a∈R).
(1)若a=1,解不等式f(x)+|x-3|≤2x;
(2)若不等式f(x)+|x-1|≥3在R上恒成立,求實數(shù)a的取值范圍.

分析 (1)通過討論x的范圍,求出各個區(qū)間上的不等式的解集,取并集即可;(2)根據(jù)絕對值的性質(zhì)問題轉(zhuǎn)化為|a+1|≥3即可,求出a的范圍即可.

解答 解:(1)依題意,|x+1|+|x-3|≤2x.
當x<-1時,原不等式化為-1-x+3-x≤2x,解得x≥21,故無解;
當-1≤x≤3時,原不等式化為x+1+3-x≤2x,解得x≥2,故2≤x≤3;
當x>3時,原不等式化為x+1+x-3≤2x,即-2≤0恒成立.
綜上所述,不等式f(x)+|x-3|≤2x的解集為[2,+∞).(5分)
(2)f(x)+|x-1|≥3?|x+a|+|x-1|≥3恒成立,
由|x+a|+|x-1|≥|a+1|可知,只需|a+1|≥3即可,
故a≥2或a≤-4,即實數(shù)a的取值范圍為{a|a≥2或a≤-4}.…(10分)

點評 本題考查了解絕對值不等式問題,考查分類討論思想,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.等差數(shù)列{an},{bn}的前n項和分別為Sn,Tn,且$\frac{S_n}{T_n}=\frac{n-9}{n+3}$,則$\frac{{a}_{7}}{_{7}}$=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.現(xiàn)需建造一個容積為V的圓柱形鐵桶,它的蓋子用鋁合金材料,已知單位面積的鋁合金的價格是鐵的3倍.要使該容器的造價最低,則鐵桶的底面半徑r與高h的比值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知數(shù)列{an}的前n項和為Sn,且$\frac{1}{{{a_n}+1}}=\frac{3}{{{a_{n+1}}+1}},{a_2}=5$,則Sn=3n-n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.數(shù)列{an}滿足a1=1,且對于任意的n∈N*都有an+1=an+a1+n,則$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{2017}}}}$等于(  )
A.$\frac{2016}{2017}$B.$\frac{4032}{2017}$C.$\frac{2017}{2018}$D.$\frac{4034}{2018}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知l、m表示直線,α、β、γ表示平面,下列條件中能推出結(jié)論正確的選項是( 。
條件:①l?α,α∥β;②α∥β,β∥γ;③l⊥α,α∥β;④l⊥m,l⊥α,m⊥β.
結(jié)論:a:l⊥β;b:α⊥β;c:l∥β;d:α∥γ.
A.①⇒c、②⇒d、③⇒a、④⇒bB.①⇒a、②⇒d、③⇒c、④⇒bC.①⇒b、②⇒d、③⇒a、④⇒cD.①⇒c、②⇒b、③⇒a、④⇒d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若等差數(shù)列{an}前9項的和為27,且a10=8,則d=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知數(shù)列{an}滿足${a_{n+1}}=\frac{1}{{1-{a_n}}}(n∈{N^*})$,a8=2,則a1=$\frac{1}{2}$;若數(shù)列{an}的前n項和是Sn,則S2017=$\frac{2017}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.要得到函數(shù)y=sin(5x-$\frac{π}{4}$)的圖象,只需將函數(shù)y=cos5x的圖象( 。
A.向左平移$\frac{3π}{20}$個單位B.向右平移$\frac{3π}{20}$個單位
C.向左平移$\frac{3π}{4}$個單位D.向右平移$\frac{3π}{4}$個單位

查看答案和解析>>

同步練習(xí)冊答案