15.設(shè)正實數(shù)x,y,則|x-y|+$\frac{1}{x}$+y2的最小值為( 。
A.$\frac{7}{4}$B.$\frac{3\root{3}{2}}{2}$C.2D.$\root{3}{2}$

分析 利用絕對值不等式化簡即可得出結(jié)論.

解答 解:∵x>0,y>0,
∴|x-y|+$\frac{1}{x}$+y2=|x-y|+|$\frac{1}{x}$|+|y2|≥|x-y+$\frac{1}{x}$+y2|=|(y-$\frac{1}{2}$)2+(x+$\frac{1}{x}$)-$\frac{1}{4}$|≥|2-$\frac{1}{4}$|=$\frac{7}{4}$.
當(dāng)且僅當(dāng)y=$\frac{1}{2}$,x=$\frac{1}{x}$即x=1,y=$\frac{1}{2}$時取等號.
故選A.

點評 本題考查了絕對值不等式的性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知角α的終邊與單位圓x2+y2=1的交點為$P\;(x\;,\frac{{\sqrt{3}}}{2})$,則cos2α=( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.為調(diào)查高中生的數(shù)學(xué)成績與學(xué)生自主學(xué)習(xí)時間之間的相關(guān)關(guān)系,某重點高中數(shù)學(xué)教師對新入學(xué)的45名學(xué)生進(jìn)行了跟蹤調(diào)查,其中每周自主做數(shù)學(xué)題的時間不少于15小時的有19人,余下的人中,在高三模擬考試中數(shù)學(xué)平均成績不足120分的占$\frac{8}{13}$,統(tǒng)計成績后,得到如下的2×2列聯(lián)表:
分?jǐn)?shù)大于等于120分分?jǐn)?shù)不足120分合 計
周做題時間不少于15小時15419
周做題時間不足15小時101626
合 計252045
(Ⅰ)請完成上面的2×2列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.01的前提下認(rèn)為“高中生的數(shù)學(xué)成績與學(xué)生自主學(xué)習(xí)時間有關(guān)”;
(Ⅱ)( i) 按照分層抽樣的方法,在上述樣本中,從分?jǐn)?shù)大于等于120分和分?jǐn)?shù)不足120分的兩組學(xué)生中抽取9名學(xué)生,設(shè)抽到的不足120分且周做題時間不足15小時的人數(shù)是X,求X的分布列(概率用組合數(shù)算式表示);
( ii) 若將頻率視為概率,從全校大于等于120分的學(xué)生中隨機抽取20人,求這些人中周做題時間不少于15小時的人數(shù)的期望和方差.
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P(K2≥k00.0500.0100.001
k03.8416.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.經(jīng)過點M(-2,-4)且傾斜角為45°的直線l與拋物線C:y2=2px(p>0)交于A、B兩點,|MA|、|AB|、|BM|成等比數(shù)列.
(Ⅰ)寫出直線l的參數(shù)方程;
(Ⅱ)求p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{lnx,x>0}\\{\frac{m}{x},x<0}\end{array}}$,若f(x)-f(-x)=0有四個不同的根,則m的取值范圍是( 。
A.(0,2e)B.(0,e)C.(0,1)D.(0,$\frac{1}{e}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=(x-b)lnx+x2在區(qū)間[1,e]上單調(diào)遞增,則實數(shù)b的取值范圍是( 。
A.(-∞,-3]B.(-∞,2e]C.(-∞,3]D.(-∞,2e2+2e]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若從集合{1,2,3,5}中隨機地選出三個元素,則滿足其中兩個元素的和等于第三個元素的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合A={-1,0,1},B={y|y=2x-2,x∈A},則A∩B=( 。
A.{0,1}B.{-1,1}C.{-1,0}D.{-1,0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5. 如圖,在四棱錐P-ABCD中,側(cè)面PAD⊥底面ABCD,底面ABCD是平行四邊形,∠ABC=45°,AD=AP=2,AB=DP=2$\sqrt{2}$,E為CD的中點,點F在線段PB上.
(Ⅰ)求證:AD⊥PC;      
(Ⅱ)當(dāng)三棱錐B-EFC的體積等于四棱錐P-ABCD體積的$\frac{1}{6}$時,求$\frac{PF}{PB}$的值.

查看答案和解析>>

同步練習(xí)冊答案