【題目】四棱錐中,底面為直角梯形,,,,的中點,的中點,平面底面.

(Ⅰ)證明:平面平面

(Ⅱ)若與底面所成的角為,求二面角的余弦值.

【答案】(Ⅰ)證明見解析;(Ⅱ).

【解析】

(Ⅰ)根據(jù)線段中點的性質(zhì)、平行四邊形形的判定定理和性質(zhì)定理,結(jié)合面面垂直的性質(zhì)定理和判定定理、平行線的性質(zhì)進行證明即可;

(Ⅱ)連結(jié),根據(jù)等腰三角形的性質(zhì),結(jié)合面面垂直的性質(zhì)定理可以證明出底面,這樣可以建立以,分別為,,軸的正方向建立空間直角坐標系,根據(jù)空間向量夾角公式進行求解即可.

(Ⅰ)

四邊形是平行四邊形

.

,.

,面,

平面平面.

(Ⅱ)連結(jié),中點,

平面,平面平面

平面平面,

底面

,以,分別為,軸的正方向建立空間直角坐標系,設(shè),,取平面的法向量,,,

,

設(shè)平面的法向量,

,令,

,.

設(shè)二面角的平面角為

為鈍角,,即二面角的余弦值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足

1)求a1,a2,a3的值;

2)對任意正整數(shù)n,an小數(shù)點后第一位數(shù)字是多少?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)).設(shè)直線的交點為,當變化時的點的軌跡為曲線.

1)求出曲線的普通方程;

2)以坐標原點為極點,軸正半軸為極軸建立極坐標系,設(shè)射線的極坐標方程為,點是射線與曲線的交點,求點的極徑.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋子中有四張卡片,分別寫有“國”、“富”、“民”、“強”四個字,有放回地從中任取一張卡片,將三次抽取后“國”“富”兩個字都取到記為事件A,用隨機模擬的方法估計事件A發(fā)生的概率,利用電腦隨機產(chǎn)生整數(shù)0,12,3四個隨機數(shù),分別代表“國”、“富”、“民”、“強”這四個字,以每三個隨機數(shù)為一組,表示取卡片三次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了以下18組隨機數(shù):

231

232

210

023

122

021

321

220

031

231

103

133

132

001

320

123

130

233

由此可以估計事件A發(fā)生的概率為_____.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=axex,gx)=x2+2x+b,若曲線yfx)與曲線ygx)都過點P1,c).且在點P處有相同的切線l

(Ⅰ)求切線l的方程;

(Ⅱ)若關(guān)于x的不等式k[efx]≥gx)對任意x[1,+∞)恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四棱錐P-ABCD的底面是正方形,底面ABCD,E是側(cè)棱的中點.

1)求異面直線AEPD所成的角;

2)求點B到平面ECD的距離

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù),已知方程為常數(shù))在上恰有三個根,分別為,下述四個結(jié)論:

①當時,的取值范圍是;

②當時,上恰有2個極小值點和1個極大值點;

③當時,上單調(diào)遞增;

④當時,的取值范圍為,且

其中正確的結(jié)論個數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖的多面體中,EF⊥平面AEB,AEEB,ADEFEFBC,BC2AD4,EF3AEBE2,GBC的中點.

(Ⅰ)求證:AB∥平面DEG;

(Ⅱ)求證:BDEG

(Ⅲ)求多面體ADBEG的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過拋物線y24x焦點F的直線交該拋物線于A,B兩點,且|AB|4,若原點O是△ABC的垂心,則點C的坐標為_____

查看答案和解析>>

同步練習冊答案