13.點(diǎn)P(x,y)在$\left\{\begin{array}{l}{x=2+2cosθ}\\{y=1+sinθ}\end{array}\right.$(θ為參數(shù))上,則x+y的最大值為( 。
A.3+$\sqrt{5}$B.5+$\sqrt{5}$C.5D.6

分析 由已知可得:x+y=2+2cosθ+1+sinθ,利用和差公式、三角函數(shù)的單調(diào)性即可得出.

解答 解:由已知可得:x+y=2+2cosθ+1+sinθ=3+$\sqrt{5}sin(θ+φ)$≤3+$\sqrt{5}$,(φ=arctan2),
當(dāng)且僅當(dāng)sin(θ+φ)=1時(shí)取等號(hào).
故選:A.

點(diǎn)評(píng) 本題考查了橢圓的參數(shù)方程、和差公式、三角函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)復(fù)數(shù)z滿足,(z-2i)(2-i)=5,則$\overline{z}$=( 。
A.2+3iB.2-3iC.3+2iD.3-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.給出如下列聯(lián)表(公式見卷首)
患心臟病患其它病合  計(jì)
高血壓201030
不高血壓305080
合  計(jì)5060110
參照公式,得到的正確結(jié)論是( 。
A.有99%以上的把握認(rèn)為“高血壓與患心臟病無(wú)關(guān)”
B.有99%以上的把握認(rèn)為“高血壓與患心臟病有關(guān)”
C.在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“高血壓與患心臟病無(wú)關(guān)”
D.在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“高血壓與患心臟病有關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在ABC中,角A,B,C所對(duì)的邊邊長(zhǎng)分別是a,b,c,若(a2+c2-b2)tanB=$\sqrt{2}$ac.則角B的值為$\frac{π}{4}$或$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.為調(diào)查某地區(qū)老人是否需要志愿者提供幫助,用簡(jiǎn)單隨機(jī)抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:
                            性別
是否需要志愿者
需要4030
不需要160270
(1)估計(jì)該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;
(2)請(qǐng)根據(jù)上面的數(shù)據(jù)分析該地區(qū)的老年人需要志愿者提供幫助與性別有關(guān)嗎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知橢圓E的方程為$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),E上動(dòng)點(diǎn)P到右焦點(diǎn)F距離的最大值為3,且離心率e=$\frac{1}{2}$.
(Ⅰ)求橢圓E的方程;
(Ⅱ)過(guò)F任作直線l交橢圓E于M、N兩點(diǎn),且線段MN垂直平分線交x軸于一點(diǎn)D.問(wèn)是否存在常數(shù)λ,使|FD|=λ|MN|.若存在,求出λ的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在調(diào)查男女乘客是否暈機(jī)的情況中,已知男乘客暈機(jī)為28人,不會(huì)暈機(jī)的也是28人,而女乘客暈機(jī)為28人,不會(huì)暈機(jī)的為56人.
暈機(jī)不暈機(jī)總計(jì)
男乘客
女乘客
總計(jì)
(1)根據(jù)以上數(shù)據(jù)完成右邊 2×2列聯(lián)表;
(2)試判斷暈機(jī)是否與性別有關(guān)?
(參考數(shù)據(jù):K2≥2.706時(shí),有90%的把握判定變量A,B有關(guān)聯(lián);K2≥3.841時(shí),有95%的把握判定變量A,B有關(guān)聯(lián);K2≥6.635時(shí),有99%的把握判定變量A,B有關(guān)聯(lián).參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+c)(b+d)(a+b)(c+d)}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.否定“至多有兩個(gè)解”的說(shuō)法中,正確的是( 。
A.恰好有兩個(gè)解B.至少有一個(gè)解C.至少有兩個(gè)解D.至少有三個(gè)解

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知平面內(nèi)三個(gè)向量:$\overrightarrow a=(3,2),\overrightarrow b=(-1,2),\overrightarrow c=(4,1)$.
(Ⅰ)若$(\overrightarrow a+k\overrightarrow c)∥(2\overrightarrow b-\overrightarrow a)$,求實(shí)數(shù)k的值;
(Ⅱ)設(shè)$\overrightarrow d=(x,y)$,且滿足$(\overrightarrow a+\overrightarrow b)⊥(\overrightarrow d-\overrightarrow c)$,$|\overrightarrow d-\overrightarrow c|=\sqrt{5}$,求$\overrightarrow d$.

查看答案和解析>>

同步練習(xí)冊(cè)答案