分析 求得$\overrightarrow{O{A}_{n}}$=(n,$\frac{1}{n+1}$),運(yùn)用向量的夾角公式可得cosθn,再求sinθn,可得$\frac{cos{θ}_{n}}{sin{θ}_{n}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,運(yùn)用裂項(xiàng)相消求和,即可得到所求和.
解答 解:函數(shù)$f(x)=\frac{1}{x+1}$,
可得An(n,$\frac{1}{n+1}$),$\overrightarrow{O{A}_{n}}$=(n,$\frac{1}{n+1}$),
cosθn=$\frac{\overrightarrow{O{A}_{n}}•\overrightarrow{i}}{|\overrightarrow{O{A}_{n}}|•|\overrightarrow{i}|}$=$\frac{\frac{1}{n+1}}{\sqrt{{n}^{2}+\frac{1}{(n+1)^{2}}}}$=$\frac{1}{\sqrt{{n}^{2}(n+1)^{2}+1}}$,
sinθn=$\sqrt{1-co{s}^{2}{θ}_{n}}$=$\frac{n(n+1)}{\sqrt{{n}^{2}(n+1)^{2}+1}}$,
可得$\frac{cos{θ}_{n}}{sin{θ}_{n}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
則$\frac{{cos{θ_1}}}{{sin{θ_1}}}+\frac{{cos{θ_2}}}{{sin{θ_2}}}+…+\frac{{cos{θ_{2017}}}}{{sin{θ_{2017}}}}$=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{2017}$-$\frac{1}{2018}$
=1-$\frac{1}{2018}$=$\frac{2017}{2018}$.
故答案為:$\frac{2017}{2018}$.
點(diǎn)評 本題考查向量的夾角公式,同角的平方關(guān)系,以及數(shù)列的求和方法:裂項(xiàng)相消求和,考查化簡整理的運(yùn)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{3}{2}$,$\frac{1}{2}$ ) | B. | (-$\frac{2}{5}$,1) | C. | (-$\frac{1}{2}$,$\frac{3}{2}$) | D. | (-$\frac{3}{2}$,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [1,+∞) | B. | (0,1) | C. | (1,+∞) | D. | (-∞,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | π | B. | 2π | C. | 4π | D. | 8π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y=\frac{1}{x^2}$ | B. | y=${(\frac{1}{2})}^{|x|}$ | C. | y=lg x | D. | y=|x|-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | 0 | 1 | 2 | 3 | 4 |
y | 2 | 4.2 | 4.5 | 4.6 | m |
A. | 5.6 | B. | 5.3 | C. | 5.0 | D. | 4.7 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com