2.下列函數(shù)中,既是偶函數(shù),又是在區(qū)間(0,+∞)上單調(diào)遞減的是(  )
A.$y=\frac{1}{x}$B.y=2|x|C.$y=ln\frac{1}{|x|}$D.y=x3

分析 對4個選項,分別判斷奇偶性、單調(diào)性,即可得出結(jié)論.

解答 解:對于A,函數(shù)是奇函數(shù),不滿足;
對于B,是偶函數(shù),又是在區(qū)間(0,+∞)上單調(diào)遞增,不滿足;
對于C,既是偶函數(shù),又是在區(qū)間(0,+∞)上單調(diào)遞減,滿足;
對于D,函數(shù)是奇函數(shù),不滿足,
故選C.

點評 本題考查函數(shù)的奇偶性與單調(diào)性,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知P(x,y)為區(qū)域$\left\{\begin{array}{l}{{y}^{2}-4{x}^{2}≤0}\\{0≤x≤a}\end{array}\right.$內(nèi)的任意一點,當(dāng)該區(qū)域的面積為2時,z=x+2y的最大值是5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知復(fù)數(shù)z=$\frac{3+i}{1-i}$,則$\overline{z}$的模長為(  )
A.$\sqrt{5}$B.5C.4D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.若x是方程${2^x}-\frac{3}{{{2^{x-1}}}}=5$的解,化簡:|x-3|+x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=$2sin(4x+ϕ)(0<ϕ<\frac{π}{2})$的圖象經(jīng)過點(0,$\sqrt{3}$).
(1)求f($\frac{19π}{12}$)的值;
(2)若$f(\frac{1}{4}α-\frac{π}{12})=\frac{2}{3}$,$α∈({\frac{π}{2},π})$,$f(\frac{1}{4}β-\frac{5π}{24})=\frac{{2\sqrt{10}}}{10}$;β是第三象限角,求cos(α-β)的值;
(3)在(2)的條件下,求$\sqrt{tan\frac{α}{2}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)$y={({\frac{1}{3}})^{|x|}}$的單調(diào)遞增區(qū)間是(-∞,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.關(guān)于x的方程lg(x-1)+lg(3-x)=lg(a-x),其中a是實常數(shù).
(1)當(dāng)a=2時,解上述方程
(2)根據(jù)a的不同取值,討論上述方程的實數(shù)解的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知向量$\overrightarrow a=(1,2)$,$\overrightarrow b=(1,0)$,$\overrightarrow c=(3,4)$,若λ為實數(shù),$(\overrightarrow a+λ\overrightarrow b)⊥\overrightarrow c$,則λ=( 。
A.$\frac{5}{3}$B.$\frac{1}{2}$C.$-\frac{5}{2}$D.$-\frac{11}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a等于(  )
A.-1或3B.-1或3C.1或3D.1或-3

查看答案和解析>>

同步練習(xí)冊答案