4.(1+tan23°)(1+tan22°)=2.

分析 由條件利用兩角和的正切公式,求得要求式子的值.

解答 解:(1+tan23°)(1+tan22°)=1+tan23°+tan22°+tan23°•tan22°=1+(tan23°+tan22°)+tan23°•tan22°
=1+tan(22°+23°)(1-tan23°•tan22°)+tan23°•tan22°=1+1-tan23°•tan22°+tan23°•tan22°=2,
故答案為:2.

點(diǎn)評(píng) 本題主要考查兩角和的正切公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.點(diǎn)M在圓C1:x2+y2+2x+8y-8=0上,點(diǎn)N在圓C2:x2+y2-4x-5=0上,則|MN|的最大值為13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知正三棱錐P-ABC的底面ABC的邊長(zhǎng)為a,高為h,在正三棱錐內(nèi)任取一點(diǎn)M,使得VP-ABC>2VM-ABC的概率是(  )
A.$\frac{7}{8}$B.$\frac{3}{4}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.函數(shù)f(x)=x2-x-2(-5≤x≤5),在其定義域內(nèi)任取一點(diǎn)x0,使f(x0)<0的概率是( 。
A.$\frac{1}{10}$B.$\frac{2}{3}$C.$\frac{3}{10}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知拋物線y2=2px(p>0)上一點(diǎn)M(1,y)到焦點(diǎn)F的距離為$\frac{17}{16}$.
(1)求p的值;
(2)若圓(x-a)2+y2=1與拋物線C有公共點(diǎn),結(jié)合圖形求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知m,n是兩條不同的直線,α,β是兩個(gè)不同的平面,則下列命題中正確的是( 。
A.若α⊥β,m∥α,則m⊥βB.若m⊥α,n⊥β,且m⊥n,則α⊥β
C.若m?α,n?β,且α∥β,則m∥nD.若m∥α,n∥β,且m∥n,則α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)集合A={x|2m-1<x<m},集合B={x|-4≤x≤5}.
(Ⅰ)若m=-3,求A∪B;
(Ⅱ)若A∩B=∅,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{\sqrt{3}}{3}$[cos(2x+$\frac{π}{6}$)+4sinxcosx]+1,x∈R.
(1)求函數(shù)f(x)的最小正周期;
(2)令g(x)=af(x)+b,若函數(shù)g(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{4}$]上的值域?yàn)閇-1.1],求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.?dāng)?shù)列{an}中,對(duì)任意自然數(shù)n∈N*,恒有a1+a2+…+an=2n-1,則a12+a22+a32…+an2=$\frac{1}{3}$(4n-1).

查看答案和解析>>

同步練習(xí)冊(cè)答案