(本小題滿分13分)已知,
(1)判斷函數(shù)的奇偶性;
(2) 判斷函數(shù)的單調(diào)性,并證明;
(3)當函數(shù)的定義域為時,求使成立的實數(shù)的取值范圍.
(1)為奇函數(shù);(2)當時,上是增函數(shù);(3)。
本小題主要考查函數(shù)單調(diào)性的應(yīng)用、函數(shù)奇偶性的應(yīng)用、不等式的解法等基礎(chǔ)知識,考查運算求解能力,考查化歸與轉(zhuǎn)化思想.屬于中檔題.
(I)先求得f(x),令x=y=0,有f(0)=0,再令x1=x,x2=-x,即f(-x)=-f(x),故f(x)為奇函數(shù).
(II)在R上任取x1<x2,則x1-x2<0,再比較f(x1)和f(x2)的大小,從而得出:f(x)是增函數(shù);
(III)由,結(jié)合上一問單調(diào)性得到求解。
解:(1)函數(shù)的定義域是,關(guān)于原點對稱
為奇函數(shù)……………4分
(2)函數(shù)上為增函數(shù)
設(shè),且,

時,,,
時,,,
時,上是增函數(shù)……………9分
解法2:,當時,,,當時, 
時,上是增函數(shù)……………9分
(3)由,
 ,……………10分  ……………11分
解得  ……………13分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)
定義在上的函數(shù)滿足:
(1)對任意,都有
(2)當時,有,求證:(Ⅰ)是奇函數(shù);
(Ⅱ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知偶函數(shù)在區(qū)間單調(diào)增加,則滿足取值范圍是 
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分16分)定義在的函數(shù)
(1)對任意的都有;
(2)當時,,回答下列問題:
①判斷的奇偶性,并說明理由;
②判斷的單調(diào)性,并說明理由;
③若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)在閉區(qū)間上的值域為,則滿足題意的有序?qū)崝?shù)對在坐標平面內(nèi)所對應(yīng)點組成圖形的長度為              

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)在區(qū)間內(nèi)單調(diào)遞增,則的取值范圍是(  )
A.,B.(1,)C.[,1)D.[,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

、函數(shù)的定義域為D,若對于任意,當時,都有,則稱函數(shù)在D上為非減函數(shù).設(shè)函數(shù)為定義在[0,1]上的非減函數(shù),且滿足以下三個條件:
;② ; ③ 當時,恒成立.則         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)奇函數(shù)上是單調(diào)函數(shù),且若函數(shù)對所有的都成立,當時,則的取值范圍是            

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的零點分別為,則(    )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案