9.設(shè)$\overrightarrow a=(sinx-1\;,\;\;cosx-1)$,$\overrightarrow b=({\frac{{\sqrt{2}}}{2}\;,\;\;\frac{{\sqrt{2}}}{2}})$
(1)若$\overrightarrow a$為單位向量,求x的值;
(2)設(shè)$f(x)=\overrightarrow a•\overrightarrow b$,則函數(shù)y=f(x)的圖象如何由y=sinx圖象得到?

分析 (1)根據(jù)$\overrightarrow a$為單位向量,求得sinx+cosx=1,即sinx=1或cosx=1,可得x的值.
(2)利用兩個向量的數(shù)量積公式,求得f(x)的解析式,再利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.

解答 解:(1)根據(jù)$\overrightarrow a=(sinx-1\;,\;\;cosx-1)$,$\overrightarrow b=({\frac{{\sqrt{2}}}{2}\;,\;\;\frac{{\sqrt{2}}}{2}})$為單位向量,
∴(sinx-1)2+(cosx-1)2=1,求得sinx+cosx=1,∴sinx=1或cosx=1,
∴x=2kπ+$\frac{π}{2}$,或x=2kπ,k∈Z.
(2)∵$f(x)=\overrightarrow a•\overrightarrow b$=$\frac{\sqrt{2}}{2}$sinx-$\frac{\sqrt{2}}{2}$+$\frac{\sqrt{2}}{2}$cosx-$\frac{\sqrt{2}}{2}$=sin(x+$\frac{π}{4}$)-$\sqrt{2}$,
則函數(shù)y=f(x)的圖象如何由y=sinx圖象先向左平移$\frac{π}{4}$個單位,可得y=sin(x+$\frac{π}{4}$)的圖象,
再想下平移$\sqrt{2}$個單位,可得函數(shù)y=f(x)的圖象.

點評 本題主要考查兩個向量的數(shù)量積公式,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某三棱錐的三視圖如圖所示,則該三棱錐的體積為( 。
A.$\frac{{64\sqrt{3}}}{3}$B.$\frac{{16\sqrt{3}}}{3}$C.$\frac{{32\sqrt{3}}}{3}$D.$\frac{32}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}滿足a1=1,an+1-3an=1.
(1)證明:$\{{a_n}+\frac{1}{2}\}$是等比數(shù)列,并求{an}的通項公式;
(2)設(shè)bn=2nan+n,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知|an|是遞增的等差數(shù)列,a1,a2是函數(shù)f(x)=x2-10x+21的兩個零點.
(1)求數(shù)列|an|的通項公式;
(2)記bn=an×3n,求數(shù)列|bn|的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在平面直角坐標(biāo)系xOy中,P為雙曲線x2-y2=1右支上的一個動點.若點P到直線x-y+1=0 的距離大于m恒成立,則實數(shù) m的最大值為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知P為橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1上的一個點,M,N分別為圓(x+3)2+y2=1和圓(x-3)2+y2=4上的點,則|PM|+|PN|的最小值為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某校高三(1)班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如下,據(jù)此解答如下問題.

(1)求全班人數(shù)及分數(shù)在[80,90)之間的頻數(shù),并估計該班的平均分數(shù);
(2)若要從分數(shù)在[80,100]之間的試卷中任取兩份分析學(xué)生失分情況,在抽取的試卷中,求至少有一份分數(shù)在[90,100]之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(1)等比數(shù)列{an}中,${a_3}=\frac{3}{2},{S_3}=\frac{9}{2}$,求公比q的值.
(2)已知數(shù)列{an}中,${S_n}={n^2}$,求數(shù)列{an}通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知實數(shù)a>0,集合$A=\left\{{x\left|{\frac{x+1}{x-a}<0}\right.}\right\}$,集合B={x||2x-1|>5}.
(1)求集合A、B;
(2)若A∩B≠∅,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案