4.已知雙曲線x2-y2=1,點(diǎn)F1,F(xiàn)2為其兩個(gè)焦點(diǎn),點(diǎn)P為雙曲線上一點(diǎn),若|PF1|=1,則|PF2|=( 。
A.3B.$2\sqrt{2}$C.4D.2

分析 由雙曲線的定義,丨|PF1|-|PF2|丨=2a=2,由|PF1|=1,P在雙曲線的左支上,則|PF2|-|PF1|=2,即可求得|PF2|.

解答 解:雙曲線x2-y2=1,焦點(diǎn)在x軸上,a=1,
由雙曲線的定義可知:丨|PF1|-|PF2|丨=2a=2,
由|PF1|=1,則P在雙曲線的左支上,
∴|PF2|-|PF1|=2,
解得:|PF2|=3,
故選:A.

點(diǎn)評(píng) 本題考查雙曲線的定義及雙曲線的簡單應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.cos10°sin70°-cos80°sin20°=( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,滿足a1=1,2Sn=an+1-1.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log3an+1,數(shù)列{bn}的前n項(xiàng)和為Tn,求數(shù)列{$\frac{1}{{T}_{n}}$}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知過原點(diǎn)的動(dòng)直線與圓${C_1}:{x^2}+{y^2}-6x+5=0$相交于不同的兩點(diǎn)A,B.
(1)求線段AB的中點(diǎn)M的軌跡C的方程;
(2)是否存在實(shí)數(shù),使得直線L:y=k(x-4)與曲線C只有一個(gè)交點(diǎn):若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在四棱錐V-ABCD中,B1,D1分別為側(cè)棱VB,VD的中點(diǎn),則四面體A-B1CD1的體積與四棱錐V-ABCD的體積之比為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若θ∈R,則直線y=sinθ•x+2的傾斜角的取值范圍是[0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某企業(yè)2015年的純利潤為500萬元,因?yàn)槠髽I(yè)的設(shè)備老化等原因,企業(yè)的生產(chǎn)能力將逐年下降.若不進(jìn)行技術(shù)改造,預(yù)測(cè)從2015年開始,此后每年比上一年純利潤減少20萬元.如果進(jìn)行技術(shù)改造,2016年初該企業(yè)需一次性投入資金600萬元,在未扣除技術(shù)改造資金的情況下,預(yù)計(jì)2016年的利潤為750萬元,此后每年的利潤比前一年利潤的一半還多250萬元.
(1)設(shè)從2016年起的第n年(以2016年為第一年),該企業(yè)不進(jìn)行技術(shù)改造的年純利潤為an萬元;進(jìn)行技術(shù)改造后,在未扣除技術(shù)改造資金的情況下的年利潤為bn萬元,求an和bn;
(2)設(shè)從2016年起的第n年(以2016年為第一年),該企業(yè)不進(jìn)行技術(shù)改造的累計(jì)純利潤為An萬元,進(jìn)行技術(shù)改造后的累計(jì)純利潤為Bn萬元,求An和Bn;
(3)依上述預(yù)測(cè),從2016年起該企業(yè)至少經(jīng)過多少年,進(jìn)行技術(shù)改造的累計(jì)純利潤將超過不進(jìn)行技術(shù)改造的累計(jì)純利潤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.為了解適齡公務(wù)員對(duì)開放生育二胎政策的態(tài)度,某部門隨機(jī)調(diào)查了90位三十歲到四十歲的公務(wù)員,得到如下列聯(lián)表,因不慎丟失部分?jǐn)?shù)據(jù).
(1))完成表格數(shù)據(jù),判斷是否有99%以上的把握認(rèn)為“生二胎意愿與性別有關(guān)”并說明理由;
(2)已知15位有意愿生二胎的女性公務(wù)員中有兩位來自省婦聯(lián),該部門打算從這15位有意愿生二胎的女性公務(wù)員中隨機(jī)邀請(qǐng)兩位來參加座談,設(shè)邀請(qǐng)的2人中來自省婦聯(lián)的人數(shù)為X,求X的分布列及數(shù)學(xué)期望E(X).
男性公務(wù)員女性公務(wù)員總計(jì)
有意愿生二胎1545
無意愿生二胎25
總計(jì)
P(k2≥k00.0500.0100.001
k03.8416.63510.828
附:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知向量$\overrightarrow{OM}=(3,-2),\overrightarrow{ON}=(-5,-1),則\overrightarrow{MN}等于$( 。
A.(8,-1)B.(-8,1)C.(-2,-3)D.(-15,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案