7.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的圖象如圖所示,則φ=$\frac{π}{6}$.

分析 根據(jù)圖象求出A,點(0,1)在函數(shù)圖象上,可求出φ.

解答 解:由題設(shè)圖象知:A=2,
可得:f(x)=2sin(ωx+φ)
∵點(0,1)在函數(shù)圖象上,
∴1=2sinφ.
∴φ=$\frac{π}{6}+2πk$,或φ=$\frac{5π}{6}$+2kπ,(k∈Z)
∵|φ|<π
∴φ=$\frac{π}{6}$
故答案為:$\frac{π}{6}$.

點評 本題主要考查對三角函數(shù)的化簡能力和三角函數(shù)的圖象和性質(zhì)的運用,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

17.函數(shù)f(x)=ex與函數(shù)g(x)=-2x+3的圖象的交點的橫坐標所在的大致區(qū)間是( 。
A.(-1,0)B.$({0,\frac{1}{2}})$C.$({\frac{1}{2},1})$D.(1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知空間四點A(2,0,0),B(0,2,1),C(1,1,1),D(-1,m,n).
(1)若AB∥CD,求實數(shù)m,n的值;
(2)若m+n=1,且直線AB和CD所成角的余弦值為$\frac{1}{3}$,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知平面區(qū)域D=$\left\{{({x,y})\left|\begin{array}{l}\\ 3x+y≥3\\ x-y≤2\\ x+3y≤3\end{array}\right.}\right\}$,z=3x-2y,若命題“?(x0,y0)∈D,z>m”為假命題,則實數(shù)m的最小值為$\frac{25}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設(shè)U=R,A={x|2x<2},B={x|log2x<0},則A∩(∁UB)=( 。
A.B.{x|x≤0}C.{x|0<x≤1}D.{x|0≤x<1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.等邊三角形ABC與正方形ABDE有一公共邊AB,二面角C-AB-D的余弦值為$\frac{\sqrt{3}}{3}$,M,N分別是AC.BC的中點,則EM,AN所成角的余弦值等于( 。
A.$\frac{1}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{6}}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,下列說法正確的是( 。
A.f(x)的圖象關(guān)于直線x=-$\frac{2π}{3}$對稱
B.函數(shù)f(x)在[-$\frac{π}{3}$,0]上單調(diào)遞增
C.f(x)的圖象關(guān)于點(-$\frac{5π}{12}$,0)對稱
D.將函數(shù)y=2sin(2x-$\frac{π}{6}$)的圖象向左平移$\frac{π}{6}$個單位得到f(x)的圖象

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.從某工廠生產(chǎn)的P,Q兩種型號的玻璃種分別隨機抽取8個樣品進行檢查,對其硬度系數(shù)進行統(tǒng)計,統(tǒng)計數(shù)據(jù)用莖葉圖表示(如圖所示),則P組數(shù)據(jù)的眾數(shù)和Q組數(shù)據(jù)的中位數(shù)分別為( 。
A.22和22.5B.21.5和23C.22和22D.21.5和22.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.在銳角△ABC中,角A,B,C所對的邊分別為a,b,c,若sinA=$\frac{2\sqrt{2}}{3}$,a=2,ccosB+bcosC=2acosB,則b的值為$\frac{3\sqrt{6}}{4}$.

查看答案和解析>>

同步練習冊答案