分析 (Ⅰ)由題意可知:a2,a4,a8成等比數(shù)列,即(2+3d)2=(2+d)(2+7d),解得:d=2,由等差數(shù)列的通項公式即可求得求數(shù)列{an}的通項公式;
(Ⅱ)由(Ⅰ)化簡bn,利用“裂項消項法”即可求得數(shù)列{bn}的前n項和Tn.
解答 解:(Ⅰ)由a2,a4,a8成等比數(shù)列,
∴(2+3d)2=(2+d)(2+7d),整理得:d2-2d=0,
∵d=2,d=0(舍去),
∴an=2+2(n-1)=2n,
數(shù)列{an}的通項公式an=2n;
(Ⅱ)若bn=$\frac{2}{{(n+1){a_n}}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,
數(shù)列{bn}的前n項和Tn=1$-\frac{1}{2}$+$\frac{1}{2}-\frac{1}{3}$+$\frac{1}{3}-\frac{1}{4}$+…+$\frac{1}{n}-\frac{1}{n+1}$
=1-$\frac{1}{n+1}$
=$\frac{n}{n+1}$.
點評 本題考查等差數(shù)列以及等比數(shù)列的應(yīng)用,數(shù)列的通項公式的求法,數(shù)列求和的方法,考查計算能力.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 不存在x0≥0,${2}^{{x}_{0}}$>0 | B. | 存在x0≥0,${2}^{{x}_{0}}$≥0 | ||
C. | 對任意的x0≥0,2x≤0 | D. | 對任意的x0≥0,2x>0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | A 6 2×A 5 4種 | B. | A 6 2×5 4種 | C. | C 6 2×A 5 4種 | D. | C 6 2×5 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 所有的素數(shù)是奇數(shù) | B. | ?x∈R,x+$\frac{1}{x}$≥2 | ||
C. | ?x∈R,x2-2x-3=0 | D. | 存在兩個相交平面垂直于同一直線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com