【題目】已知函數(shù)(常數(shù)).

1)當(dāng)時(shí),求曲線處的切線方程;

2)討論函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù)(為自然對(duì)數(shù)的底數(shù)).

【答案】1;(2)答案見解析.

【解析】

1)先根據(jù)導(dǎo)數(shù)幾何意義得切線斜率,再根據(jù)點(diǎn)斜式得結(jié)果;

2)先求函數(shù)最小值,再根據(jù)最小值分類討論,結(jié)合零點(diǎn)存在定理確定零點(diǎn)個(gè)數(shù)

1)當(dāng)時(shí),,

,

又∵

∴曲線處的切線方程為

2)∵,

,

∴當(dāng)時(shí),,當(dāng)時(shí),,

上是增函數(shù),在上是減函數(shù).

討論函數(shù)的零點(diǎn)情況如下:

①當(dāng),即時(shí),函數(shù)無零點(diǎn),在上也無零點(diǎn).

②當(dāng),即時(shí),函數(shù)內(nèi)有唯一零點(diǎn)

,

內(nèi)有一個(gè)零點(diǎn).

③當(dāng),即時(shí),

由于,,

,

當(dāng),即時(shí),

由單調(diào)性可知,函數(shù)內(nèi)有唯一零點(diǎn),在內(nèi)有唯一零點(diǎn),則內(nèi)有兩個(gè)零點(diǎn);

當(dāng),即時(shí),,而且,,

由單調(diào)性可知內(nèi)有唯一的一個(gè)零點(diǎn),在內(nèi)沒有零點(diǎn),

所以內(nèi)只有一個(gè)零點(diǎn).

綜上所述,當(dāng)時(shí),函數(shù)在區(qū)間上無零點(diǎn);

當(dāng)時(shí),函數(shù)在區(qū)間上有一個(gè)零點(diǎn);

當(dāng)時(shí),函數(shù)在區(qū)間上有兩個(gè)零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)數(shù)是簡(jiǎn)化繁雜運(yùn)算的產(chǎn)物.16世紀(jì)時(shí),為了簡(jiǎn)化數(shù)值計(jì)算,數(shù)學(xué)家希望將乘除法歸結(jié)為簡(jiǎn)單的加減法.當(dāng)時(shí)已經(jīng)有數(shù)學(xué)家發(fā)現(xiàn)這在某些情況下是可以實(shí)現(xiàn)的.

比如,利用以下2的次冪的對(duì)應(yīng)表可以方便地算出的值.

4

5

6

7

8

9

10

11

12

16

32

64

128

256

512

1024

2048

4096

首先,在第二行找到16256;然后找出它們?cè)诘谝恍袑?duì)應(yīng)的數(shù),即48,并求它們的和,即12;最后在第一行中找到12,讀出其對(duì)應(yīng)的第二行中的數(shù)4096,這就是的值.

用類似的方法可以算出的值,首先,在第二行找到4096128;然后找出它們?cè)诘谝恍袑?duì)應(yīng)的數(shù),即127,并求它們的______;最后在第一行中找到______,讀出其對(duì)應(yīng)的第二行中的數(shù)______,這就是.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),(其中是自然對(duì)數(shù)的底數(shù)),,

1)討論函數(shù)的單調(diào)性;

2)設(shè)函數(shù),若對(duì)任意的恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】端午節(jié)是我國(guó)民間為紀(jì)念愛國(guó)詩人屈原的一個(gè)傳統(tǒng)節(jié)日.某市為了解端午節(jié)期間粽子的銷售情況,隨機(jī)問卷調(diào)查了該市1000名消費(fèi)者在去年端午節(jié)期間的粽子購(gòu)買量(單位:克),所得數(shù)據(jù)如下表所示:

購(gòu)買量

人數(shù)

100

300

400

150

50

將煩率視為概率

1)試求消費(fèi)者粽子購(gòu)買量不低于300克的概率;

2)若該市有100萬名消費(fèi)者,請(qǐng)估計(jì)該市今年在端午節(jié)期間應(yīng)準(zhǔn)備多少千克棕子才能滿足市場(chǎng)需求(以各區(qū)間中點(diǎn)值作為該區(qū)間的購(gòu)買量).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若存在一個(gè)實(shí)數(shù),使得成立,則稱為函數(shù)的一個(gè)不動(dòng)點(diǎn),設(shè)函數(shù), 為自然對(duì)數(shù)的底數(shù)),定義在上的連續(xù)函數(shù)滿足,且當(dāng)時(shí), .若存在,且為函數(shù)的一個(gè)不動(dòng)點(diǎn),則實(shí)數(shù)的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)均在軸上的兩橢圓,的離心率相同且均為,橢圓過點(diǎn)且其上頂點(diǎn)恰為橢圓的上焦點(diǎn).是橢圓上異于,的任意一點(diǎn),直線與橢圓交于,兩點(diǎn),直線與橢圓交于,兩點(diǎn).

1)求橢圓,的標(biāo)準(zhǔn)方程.

2)證明:

3是否為定值?若為定值.則求出該定值;否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),則下列判斷中是真命題的有( ).

;②是偶函數(shù);③對(duì)于任意一個(gè)非零有理數(shù),;④存在三個(gè)點(diǎn),,,使得為等邊三角形.

A.①②③B.①②③④C.①③④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為加強(qiáng)環(huán)境保護(hù),治理空氣污染,環(huán)境監(jiān)測(cè)部門對(duì)某市空氣質(zhì)量進(jìn)行調(diào)研,隨機(jī)抽查了天空氣中的濃度(單位:),得下表:

1)估計(jì)事件該市一天空氣中濃度不超過,且濃度不超過的概率;

2)根據(jù)所給數(shù)據(jù),完成下面的列聯(lián)表:

3)根據(jù)(2)中的列聯(lián)表,判斷是否有的把握認(rèn)為該市一天空氣中濃度與濃度有關(guān)?

附:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一個(gè)質(zhì)點(diǎn)在第一象限運(yùn)動(dòng),第一秒鐘內(nèi)它由原點(diǎn)移動(dòng)到,而后它接著按圖所示在與軸、軸平行的方向運(yùn)動(dòng),且每秒移動(dòng)一個(gè)單位長(zhǎng)度,那么2018秒后,這個(gè)質(zhì)點(diǎn)所處的位置的坐標(biāo)是________.

查看答案和解析>>

同步練習(xí)冊(cè)答案