9.已知α為第二象限的角,sinα=$\frac{1}{2}$,β為第一象限的角,cosβ=$\frac{3}{5}$. 則tan(2α-β)的值為(  )
A.$\frac{{48+25\sqrt{3}}}{39}$B.$\frac{{48-25\sqrt{3}}}{39}$C.$-\frac{{48+25\sqrt{3}}}{39}$D.$-\frac{{48-25\sqrt{3}}}{39}$

分析 利用同角三角函數(shù)的基本關(guān)系求得tanα、tanβ的值,利用二倍角公式求得tan2α的值,再利用兩角差的正切公式求得tan(2α-β)的值.

解答 解:∵α為第二象限的角,sinα=$\frac{1}{2}$,∴cosα=-$\sqrt{{1-sin}^{2}α}$=-$\frac{\sqrt{3}}{2}$,
∴sin2α=2sinαcosα=-$\frac{\sqrt{3}}{2}$,cos2α=2cos2α-1=$\frac{1}{2}$,tan2α=$\frac{sin2α}{cos2α}$=-$\sqrt{3}$.
∵β為第一象限的角,cosβ=$\frac{3}{5}$,∴sinβ=$\sqrt{{1-cos}^{2}β}$=$\frac{4}{5}$,∴tanβ=$\frac{4}{3}$,
則tan(2α-β)=$\frac{tan2α-tanβ}{1+tan2α•tanβ}$=$\frac{-\sqrt{3}-\frac{4}{3}}{1-\sqrt{3}•\frac{4}{3}}$=$\frac{48+25\sqrt{3}}{39}$,
故選:A.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系、二倍角公式、兩角差的正切公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若雙曲線$E:\frac{x^2}{9}-\frac{y^2}{16}=1$的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P在雙曲線E上,且PF1=3,則PF2等于9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知函數(shù)f(x)=(x-2)(ax+b)為偶函數(shù),且在(0,+∞)上單調(diào)遞增,則f(2-x)>0的解集為{x|x<0或x>4}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知f(x)是可導(dǎo)的函數(shù),且f′(x)<f(x)對(duì)于x∈R恒成立,則(  )
A.f(1)<ef(0),f(2017)>e2017f(0)B.f(1)>ef(0),f(2017)>e2017f(0)
C.f(1)>ef(0),f(2017)<e2017f(0)D.f(1)<ef(0),f(2017)<e2017f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.求已知點(diǎn)P(5,0)及圓C:x2+y2-4x-8y-5=0,若直線l過(guò)點(diǎn)P且被圓C截得的弦AB長(zhǎng)是8,則直線 l的方程是x-5=0或7x+24y-35=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.兩人打靶,甲擊中目標(biāo)的概率為0.8,乙擊中目標(biāo)的概率為0.7,若兩人同時(shí)射擊一目標(biāo),則他們都擊中目標(biāo)的概率是( 。
A.0.6B.0.48C.0.75D.0.56

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}y≥x+2\\ x+y≤6\\ x≥1\end{array}$,其中,則實(shí)數(shù)$\frac{y}{x+1}$的最小值為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.直線l將圓x2+y2-2x-4y=0平分,且與直線x+2y=0垂直,則直線l的方程是( 。
A.2x-y=0B.2x-y-2=0C.x+2y-3=0D.x-2y+3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若$\overrightarrow{a}$=(2,3),$\overrightarrow$=(-4,7),$\overrightarrow{a}$+$\overrightarrow{c}$=0,則$\overrightarrow{c}$在$\overrightarrow$方向上的投影為$-\frac{\sqrt{65}}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案