20.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1(a>0)的離心率為$\frac{\sqrt{5}}{2}$,點F1、F2是其左右焦點,點P(5,y0)與點Q是雙曲線上關(guān)于坐標原點對稱的兩點,則四邊形F1QF2P的面積為6$\sqrt{5}$.

分析 利用雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1(a>0)的離心率為$\frac{\sqrt{5}}{2}$,求出a,可得雙曲線方程,代入x=5,可得P的坐標,即可求出四邊形F1QF2P的面積.

解答 解:∵雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1(a>0)的離心率為$\frac{\sqrt{5}}{2}$,
∴$\frac{\sqrt{{a}^{2}+4}}{a}=\frac{\sqrt{5}}{2}$,
∴a=4,
∴雙曲線方程是$\frac{{x}^{2}}{16}-\frac{{y}^{2}}{4}$=1,
x=5代入,可得y0=$±\frac{3}{2}$,
∴四邊形F1QF2P的面積為2×$\frac{1}{2}×4\sqrt{5}×\frac{3}{2}$=6$\sqrt{5}$.
故答案為:6$\sqrt{5}$.

點評 本題考查雙曲線的方程與性質(zhì),考查四邊形F1QF2P的面積的計算,求出雙曲線的方程是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.圓心在直線$y=\frac{1}{3}x$上的圓C與y軸的正半軸相切,圓C截x軸所得的弦長為$4\sqrt{2}$,則圓C的標準方程為( 。
A.(x-3)2+(y-1)2=9B.(x+3)2+(y+1)2=9C.${({x-4})^2}+{({y-\frac{4}{3}})^2}=16$D.(x-6)2+(y-2)2=9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知拋物線y2=2px(p>0)上的點A到焦點F距離為4,若在y軸上存點B(0,2)使得$\overrightarrow{BA}$$•\overrightarrow{BF}$=0,則該拋物線的方程為(  )
A.y2=8xB.y2=6xC.y2=4xD.y2=2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.關(guān)于x的方程($\frac{1}{3}$)|x|+a-1=0有解,則a的取值范圍是( 。
A.0≤a<1B.-1<a≤0C.a≥1D.a>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知正三棱錐P-ABC的底面ABC的邊長為a,高為h,在正三棱錐內(nèi)任取一點M,使得VP-ABC>2VM-ABC的概率是( 。
A.$\frac{7}{8}$B.$\frac{3}{4}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知F1,F(xiàn)2是橢圓$\frac{{y}^{2}}{9}$+$\frac{{x}^{2}}{4}$=1的兩個焦點,經(jīng)過點F2的直線交橢圓于A,B兩點,若|AB|=4,則|AF1|+|BF1|=(  )
A.12B.9C.8D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f(x)=x2-x-2(-5≤x≤5),在其定義域內(nèi)任取一點x0,使f(x0)<0的概率是( 。
A.$\frac{1}{10}$B.$\frac{2}{3}$C.$\frac{3}{10}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知m,n是兩條不同的直線,α,β是兩個不同的平面,則下列命題中正確的是(  )
A.若α⊥β,m∥α,則m⊥βB.若m⊥α,n⊥β,且m⊥n,則α⊥β
C.若m?α,n?β,且α∥β,則m∥nD.若m∥α,n∥β,且m∥n,則α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若a=60.3,b=log0.30.6,c=log6sin1,則a、b、c的大小關(guān)系為( 。
A.a>b>cB.b>a>cC.c>a>bD.b>c>a

查看答案和解析>>

同步練習(xí)冊答案