17.已知x為三角形中的最小角,則函數(shù)$y=sinx+\sqrt{3}cosx+1$的值域?yàn)閇$\sqrt{3}+1$,3].

分析 由x為三角形中的最小內(nèi)角,可得0<x≤$\frac{π}{3}$,而$y=sinx+\sqrt{3}cosx+1$=2sin(x+$\frac{π}{3}$)+1,結(jié)合已知所求的x的范圍可求y的范圍.

解答 解:x為三角形中的最小內(nèi)角,由三角形的內(nèi)角和定理可知:
0<x≤$\frac{π}{3}$,
$y=sinx+\sqrt{3}cosx+1$=2sin(x+$\frac{π}{3}$)+1,
由0<x≤$\frac{π}{3}$,即$\frac{π}{3}$<x+$\frac{π}{3}$≤$\frac{2π}{3}$,
∴$\frac{\sqrt{3}}{2}$≤sin(x+$\frac{π}{3}$)≤1,
$\sqrt{3}$+1≤2sin(x+$\frac{π}{3}$)+1≤3,
函數(shù)$y=sinx+\sqrt{3}cosx+1$的值域[$\sqrt{3}+1$,3]
故答案為:[$\sqrt{3}+1$,3].

點(diǎn)評(píng) 本題主要考查了輔助角公式的應(yīng)用,考查三角形的內(nèi)角和定理的應(yīng)用,正弦函數(shù)的圖象的性質(zhì),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)y=f(x)在定義域(-1,1)上是減函數(shù),且f(2a-1)<f(1-a),則實(shí)數(shù)a的取值范圍是(  )
A.($\frac{2}{3},+∞$)B.($\frac{2}{3},1)$C.(0,2)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)f:A→B是從A 到B的一個(gè)映射,其中A=B={(x,y)|x,y∈R},(x,y)在映射f的作用下的像是(2x-y,2y-x)
求(1)求A中元素(-1,2)在f作用下的像
(2))求B中元素(3,-3)在f 作用下的原像.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.冪函數(shù)f(x)=(m2-m-1)x5m+3在(0,+∞)上是增函數(shù),則m=( 。
A.2B.-1C.4D.2或-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{f(x-4),x>2}\\{{e}^{x},-2≤x≤2}\\{f(-x),x<-2}\end{array}$,則f(-2017)=( 。
A.1B.eC.$\frac{1}{e}$D.e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知兩定點(diǎn)A(-1,0)和B(1,0),動(dòng)點(diǎn)P(x,y)在直線l:y=x+3上移動(dòng),橢圓C以A,B為焦點(diǎn)且經(jīng)過點(diǎn)P,則橢圓C的離心率的最大值為( 。
A.$\frac{\sqrt{5}}{5}$B.$\frac{\sqrt{10}}{5}$C.$\frac{2\sqrt{5}}{5}$D.$\frac{2\sqrt{10}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知向量$\overrightarrow m=(\sqrt{3}sinωx,1)$,$\overrightarrow n=(cosωx,{cos^2}ωx+1)$,設(shè)函數(shù)f(x)=$\overrightarrow m•\overrightarrow n$+b.
(1)若函數(shù)f(x)的圖象關(guān)于直線x=$\frac{π}{6}$對(duì)稱,且ω∈[0,3]時(shí),求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)在(1)的條件下,當(dāng)$x∈[{0,\frac{7π}{12}}]$時(shí),函數(shù)f(x)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)函數(shù)f(x)=${e^x}({{x^3}+\frac{3}{2}{x^2}-6x+2})-2a{e^x}$-x,若不等式f(x)≤0在[-2,+∞)上有解,則實(shí)數(shù)a的最小值為(  )
A.$-\frac{3}{2}-\frac{1}{e}$B.$-\frac{3}{2}-\frac{2}{e}$C.$-\frac{3}{4}-\frac{1}{2e}$D.$-1-\frac{1}{e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,在四棱錐P-ABCD中,底面ABCD是菱形,且AB=$\sqrt{2}$,∠ABC=60°,點(diǎn)A在平面PBC上的射影為PB的中點(diǎn)O,PB⊥AC.
(1)求證:PC=PD;
(2)求點(diǎn)A到平面PCD的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案