分析 (1)先對函數(shù)求導(dǎo),f′(x)=2x+a-$\frac{1}{x}$,可得切線的斜率k=2x0+a-$\frac{1}{{x}_{0}}$=$\frac{{y}_{0}}{{x}_{0}}$=$\frac{{{x}_{0}}^{2}+{ax}_{0}-l{nx}_{0}}{{x}_{0}}$,即x02+lnx0-1=0,由x0=1是方程的解,且y=x2+lnx-1在(0,+∞)上是增函數(shù),可證
(2)由F(x)=$\frac{f(x)}{g(x)}$=$\frac{{x}^{2}+ax-lnx}{{e}^{x}}$,求出函數(shù)F(x)的導(dǎo)數(shù),通過研究2-a的正負(fù)可判斷h(x)的單調(diào)性,進(jìn)而可得函數(shù)F(x)的單調(diào)性,可求a的范圍.
解答 解:(1)f′(x)=2x+a-$\frac{1}{x}$(x>0),
過切點(diǎn)P(x0,y0)的切線的斜率k=2x0+a-$\frac{1}{{x}_{0}}$=$\frac{{y}_{0}}{{x}_{0}}$=$\frac{{{x}_{0}}^{2}+{ax}_{0}-l{nx}_{0}}{{x}_{0}}$,
整理得x02+lnx0-1=0,
顯然,x0=1是這個方程的解,又因?yàn)閥=x2+lnx-1在(0,+∞)上是增函數(shù),
所以方程x2+lnx-1=0有唯一實(shí)數(shù)解.故x0=1;
(2)F(x)=$\frac{f(x)}{g(x)}$=$\frac{{x}^{2}+ax-lnx}{{e}^{x}}$,F(xiàn)′(x)=$\frac{{-x}^{2}+(2-a)x+a-\frac{1}{x}+lnx}{{e}^{x}}$,
設(shè)h(x)=-x2+(2-a)x+a-$\frac{1}{x}$+lnx,則h′(x)=-2x+$\frac{1}{{x}^{2}}$+$\frac{1}{x}$+2-a,
易知h'(x)在(0,1]上是減函數(shù),從而h'(x)≥h'(1)=2-a;
①當(dāng)2-a≥0,即a≤2時,h'(x)≥0,h(x)在區(qū)間(0,1)上是增函數(shù).
∵h(yuǎn)(1)=0,∴h(x)≤0在(0,1]上恒成立,即F'(x)≤0在(0,1]上恒成立.
∴F(x)在區(qū)間(0,1]上是減函數(shù).
所以,a≤2滿足題意;
②當(dāng)2-a<0,即a>2時,設(shè)函數(shù)h'(x)的唯一零點(diǎn)為x0,
則h(x)在(0,x0)上遞增,在(x0,1)上遞減;
又∵h(yuǎn)(1)=0,∴h(x0)>0.
又∵h(yuǎn)(e-a)=-e-2a+(2-a)e-a+a-ea+lne-a<0,
∴h(x)在(0,1)內(nèi)有唯一一個零點(diǎn)x',
當(dāng)x∈(0,x')時,h(x)<0,當(dāng)x∈(x',1)時,h(x)>0.
從而F(x)在(0,x')遞減,在(x',1)遞增,
與在區(qū)間(0,1]上是單調(diào)函數(shù)矛盾.
∴a>2不合題意.
綜合①②得,a≤2.
點(diǎn)評 考查學(xué)生利用導(dǎo)數(shù)研究函數(shù)的單調(diào)能力,函數(shù)單調(diào)性的判定,以及導(dǎo)數(shù)的運(yùn)算,試題具有一定的綜合性.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(0,\frac{1}{3})$ | B. | $(\frac{1}{3},\frac{1}{2})$ | C. | $(\frac{1}{2},\frac{2}{3})$ | D. | $(\frac{2}{3},1)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{6}$ | C. | $\frac{{\sqrt{3}π}}{9}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com