A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
分析 由已知條件推導(dǎo)出$\frac{f(x)}{g(x)}$=ax,利用條件,結(jié)合導(dǎo)數(shù)的性質(zhì)求出$\frac{f(x)}{g(x)}$=ax是減函數(shù),利用$\frac{f(1)}{g(1)}+\frac{f(-1)}{g(-1)}=\frac{5}{2}$,推導(dǎo)出a=$\frac{1}{2}$.從而得到有窮數(shù)列$\{\frac{f(n)}{g(n)}\}$為{($\frac{1}{2}$)n},再由等比數(shù)列的求和公式結(jié)合條件,解不等式可得k>4,由古典概率公式能求出結(jié)果.
解答 解:∵f(x)=ax•g(x)(a>0且a≠1),
∴$\frac{f(x)}{g(x)}$=ax,
又∵f′(x)g(x)<f(x)g′(x),
∴($\frac{f(x)}{g(x)}$)′=$\frac{f′(x)g(x)-f(x)g′(x)}{{g}^{2}(x)}$<0,
∴$\frac{f(x)}{g(x)}$=ax是減函數(shù),
∴0<a<1,
∵$\frac{f(1)}{g(1)}+\frac{f(-1)}{g(-1)}=\frac{5}{2}$,
∴a1+a-1=$\frac{5}{2}$,解得a=$\frac{1}{2}$或a=2.
綜上得a=$\frac{1}{2}$.
∴有窮數(shù)列$\{\frac{f(n)}{g(n)}\}$為{($\frac{1}{2}$)n}.
∵數(shù)列$\{\frac{f(n)}{g(n)}\}$的前k項和大于$\frac{15}{16}$,
∴($\frac{1}{2}$)+($\frac{1}{2}$)2}+…+($\frac{1}{2}$)k>$\frac{15}{16}$,
即有$\frac{\frac{1}{2}(1-\frac{1}{{2}^{k}})}{1-\frac{1}{2}}$>$\frac{15}{16}$,
即為$\frac{1}{{2}^{k}}$<$\frac{1}{16}$,解得k>4,
即有k=5,6,…,10,
而n=1,2,…,10,
則前k項和大于$\frac{15}{16}$的概率是$\frac{6}{10}$=$\frac{3}{5}$.
故選:C.
點評 本題考查等比數(shù)列的前n項和公式的應(yīng)用,巧妙地把指數(shù)函數(shù)、導(dǎo)數(shù)、數(shù)列融合在一起,考查構(gòu)造法和運算能力,是一道好題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“若x=y,則sinx=siny”的逆否命題為真命題 | |
B. | 若p且q為假命題,則p,q均為假命題 | |
C. | “x=-1”是“x2-5x-6=0”的充分不必要條件 | |
D. | 命題p:存在x0∈R,使得x02+x0+1<0,則非p:任意x∈R,都有x2+x+1≥0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y=2sin(2x+\frac{2π}{3})$ | B. | $y=2sin(2x+\frac{5π}{12})$ | C. | $y=2sin(2x-\frac{π}{3})$ | D. | $y=2sin(2x-\frac{π}{12})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{10}$ | B. | $\frac{3}{10}$ | C. | $\frac{1}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①②④ | B. | ①③④ | C. | ②④ | D. | ②③ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com