12.(x+$\frac{2}{\sqrt{x}}$)6的展開式中,x3項(xiàng)的系數(shù)是60(用數(shù)字作答)

分析 根據(jù)二項(xiàng)式展開式的通項(xiàng)公式,列方程求出r的值,
再求展開式中含x3項(xiàng)的系數(shù).

解答 解:(x+$\frac{2}{\sqrt{x}}$)6的展開式中,
通項(xiàng)公式為
Tr+1=${C}_{6}^{r}$•x6-r•${(\frac{2}{\sqrt{x}})}^{r}$=${C}_{6}^{r}$•2r•${x}^{6-\frac{3r}{2}}$;
令6-$\frac{3r}{2}$=3,
解得r=2,
∴展開式中含x3項(xiàng)的系數(shù)是${C}_{6}^{2}$•22=60.
故答案為:60.

點(diǎn)評 本題考查了二項(xiàng)式展開式的通項(xiàng)公式應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)集合A={x1,x2,x3,x4},xi∈{-1,0,1},i={1,2,3,4},那么集合A中滿足條件“x12+x22+x32+x42≤3”的元素個(gè)數(shù)為( 。
A.60B.65C.80D.81

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在正三棱柱ABC-A1B1C1中,A1B1=2,AA1=h,E為BB1的中點(diǎn).
(1)若h=2,請畫出該正三棱柱的正(主)視圖與左(側(cè))視圖.
(2)求證:平面A1EC⊥平面AA1C1C;
(3)當(dāng)平面A1EC與平面A1B1C1所成的銳二面角為45°時(shí),求該正三棱柱外接球的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若圓C1(x-m)2+(y-2n)2=m2+4n2+10(mn>0)始終平分圓C2:(x+1)2+(y+1)2=2的周長,則$\frac{1}{m}$+$\frac{2}{n}$的最小值為( 。
A.$\frac{9}{2}$B.9C.6D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)函數(shù)$f(x)=\frac{{{e^x}-1}}{x}$,
(1)求f(x)在x=1處的切線方程;
(2)證明:對任意a>0,當(dāng)0<|x|<ln(1+a)時(shí),|f(x)-1|<a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合A={x|x2-3x-4≥0},B={x|2<x<5},則A∩B=( 。
A.(1,5)B.[1,5)C.(4,5)D.[4,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.某化肥廠用三種原料生產(chǎn)甲乙兩種肥料,生產(chǎn)1噸甲種肥料和生產(chǎn)1噸乙種肥料所需三種原料的噸數(shù)如右表所示:已知生產(chǎn)1噸甲種肥料產(chǎn)生的利潤2萬元,生產(chǎn)1噸乙種肥料產(chǎn)生的利潤為3萬元,現(xiàn)有A種原料20噸,B種原料36噸,C種原料32噸,在此基礎(chǔ)上安排生產(chǎn),則生產(chǎn)甲乙兩種肥料的利潤之和的最大值為( 。
ABC
242
448
A.17萬元B.18萬元C.19萬元D.20萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),過雙曲線右焦點(diǎn)F傾斜角為$\frac{π}{4}$直線與該雙曲線的漸近線分別交于M、N,O為坐標(biāo)原點(diǎn),若△OMF與△ONF的面積比等于2:1,則該雙曲線的離心率等于( 。
A.$\sqrt{3}$或$\frac{\sqrt{10}}{3}$B.$\sqrt{3}$C.$\frac{\sqrt{10}}{3}$或$\sqrt{10}$D.$\frac{\sqrt{10}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若函數(shù)f(x)=($\frac{1}{2}$)x,g(x)=|log3(x-1)|,則方程f(x)-g(x)=0的實(shí)根個(gè)數(shù)為(  )
A.3B.2C.1D.0

查看答案和解析>>

同步練習(xí)冊答案