【題目】由數(shù)字1,2,3,4,5,6組成沒(méi)有重復(fù)數(shù)字的三位數(shù),偶數(shù)共有______個(gè),其中個(gè)位數(shù)字比十位數(shù)字大的偶數(shù)共有______個(gè).
【答案】60 36
【解析】
對(duì)于第一空:分2步①分析可得要求三位偶數(shù)的個(gè)位有3種情況,②在剩下的5個(gè)數(shù)字中任選2個(gè),安排在前2個(gè)數(shù)位,由分步計(jì)數(shù)原理計(jì)算可得答案;
對(duì)于第二空:按個(gè)位數(shù)字分3種情況討論,分別求出每種情況下的三位數(shù)的數(shù)目,由加法原理計(jì)算可得答案.
根據(jù)題意,
對(duì)于第一空:分2步
①要求是沒(méi)有重復(fù)數(shù)字的三位偶數(shù),其個(gè)位是2、4或6,有3種情況,
②在剩下的5個(gè)數(shù)字中任選2個(gè),安排在前2個(gè)數(shù)位,有種情況,
則有3×20=60個(gè)符合題意的三位偶數(shù);
對(duì)于第二空:分3種情況討論:
①,當(dāng)其個(gè)位為2時(shí),十位數(shù)字只能是1,百位數(shù)字有4種情況,此時(shí)有4個(gè)符合題意的三位數(shù);
②,當(dāng)其個(gè)位為4時(shí),十位數(shù)字可以是1、2、3,百位數(shù)字有4種情況,此時(shí)有3×4=12個(gè)符合題意的三位數(shù);
③,當(dāng)其個(gè)位為6時(shí),十位數(shù)字可以是1、2、3、4、5,百位數(shù)字有4種情況,此時(shí)有5×4=20個(gè)符合題意的三位數(shù);
則有4+12+20=36個(gè)符合題意的三位數(shù);
故答案為:60,36.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,設(shè),且,記;
(1)設(shè),其中,試求的單調(diào)區(qū)間;
(2)試判斷弦的斜率與的大小關(guān)系,并證明;
(3)證明:當(dāng)時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】公元2020年春,我國(guó)湖北武漢出現(xiàn)了新型冠狀病毒,人感染后會(huì)出現(xiàn)發(fā)熱、咳嗽、氣促和呼吸困難等,嚴(yán)重的可導(dǎo)致肺炎甚至危及生命.為了盡快遏制住病毒的傳播,我國(guó)科研人員,在研究新型冠狀病毒某種疫苗的過(guò)程中,利用小白鼠進(jìn)行科學(xué)試驗(yàn).為了研究小白鼠連續(xù)接種疫苗后出現(xiàn)癥狀的情況,決定對(duì)小白鼠進(jìn)行做接種試驗(yàn).該試驗(yàn)的設(shè)計(jì)為:①對(duì)參加試驗(yàn)的每只小白鼠每天接種一次;②連續(xù)接種三天為一個(gè)接種周期;③試驗(yàn)共進(jìn)行3個(gè)周期.已知每只小白鼠接種后當(dāng)天出現(xiàn)癥狀的概率均為,假設(shè)每次接種后當(dāng)天是否出現(xiàn)癥狀與上次接種無(wú)關(guān).
(1)若某只小白鼠出現(xiàn)癥狀即對(duì)其終止試驗(yàn),求一只小白鼠至多能參加一個(gè)接種周期試驗(yàn)的概率;
(2)若某只小白鼠在一個(gè)接種周期內(nèi)出現(xiàn)2次或3次癥狀,則在這個(gè)接種周期結(jié)束后,對(duì)其終止試驗(yàn).設(shè)一只小白鼠參加的接種周期為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且滿(mǎn)足.
(1)求數(shù)列的通項(xiàng).
(2)若,求數(shù)列的最大值項(xiàng).
(3)對(duì)于(2)中數(shù)列,是否存在?若存在,求出所有相等的兩項(xiàng);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,一藝術(shù)拱門(mén)由兩部分組成,下部為矩形,的長(zhǎng)分別為和,上部是圓心為的劣弧,.
(1)求圖1中拱門(mén)最高點(diǎn)到地面的距離;
(2)現(xiàn)欲以B點(diǎn)為支點(diǎn)將拱門(mén)放倒,放倒過(guò)程中矩形所在的平面始終與地面垂直,如圖2、圖3、圖4所示.設(shè)與地面水平線(xiàn)所成的角為.記拱門(mén)上的點(diǎn)到地面的最大距離為,試用的函數(shù)表示,并求出的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大學(xué)餐飲中心為了了解新生的飲食習(xí)慣,在某學(xué)院大一年級(jí)100名學(xué)生中進(jìn)行了抽樣調(diào)查,發(fā)現(xiàn)喜歡甜品的占70%.這100名學(xué)生中南方學(xué)生共80人.南方學(xué)生中有20人不喜歡甜品.
(1)完成下列列聯(lián)表:
喜歡甜品 | 不喜歡甜品 | 合計(jì) | |
南方學(xué)生 | |||
北方學(xué)生 | |||
合計(jì) |
(2)根據(jù)表中數(shù)據(jù),問(wèn)是否有95%的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”;
(3)已知在被調(diào)查的南方學(xué)生中有6名數(shù)學(xué)系的學(xué)生,其中2名不喜歡甜品;有5名物理系的學(xué)生,其中1名不喜歡甜品.現(xiàn)從這兩個(gè)系的學(xué)生中,各隨機(jī)抽取2人,記抽出的4人中不喜歡甜品的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
附:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,橢圓的一個(gè)頂點(diǎn)為,右焦點(diǎn)到直線(xiàn)的距離為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若過(guò)作兩條互相垂直的直線(xiàn),且交橢圓于、兩點(diǎn),交橢圓于、兩點(diǎn),求四邊形的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且。
(1)證明:,并求的通項(xiàng)公式;
(2)構(gòu)造數(shù)列求證:無(wú)論給定多么大的正整數(shù),都必定存在一個(gè),使.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了考察冰川的融化狀況,一支科考隊(duì)在某冰川山上相距8km的A、B兩點(diǎn)各建一個(gè)考察基地,視冰川面為平面形,以過(guò)A、B兩點(diǎn)的直線(xiàn)為x軸,線(xiàn)段AB的垂直平分線(xiàn)為y軸建立平面直角坐標(biāo)系(圖4).考察范圍到A、B兩點(diǎn)的距離之和不超過(guò)10km的區(qū)域.
(I)求考察區(qū)域邊界曲線(xiàn)的方程:
(II)如圖4所示,設(shè)線(xiàn)段是冰川的部分邊界線(xiàn)(不考慮其他邊界),當(dāng)冰川融化時(shí),邊界線(xiàn)沿與其垂直的方向朝考察區(qū)域平行移動(dòng),第一年移動(dòng)0.2km,以后每年移動(dòng)的距離為前一年的2倍.問(wèn):經(jīng)過(guò)多長(zhǎng)時(shí)間,點(diǎn)A恰好在冰川邊界線(xiàn)上?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com