11.觀察下列等式,按此規(guī)律,第n個等式的右邊等于3n2-2n.

分析 由圖知,第n個等式左邊是n個奇數(shù)的和,第一個奇數(shù)是2n-1,由等差數(shù)列的求和公式計算出第n個等式的和,即可得結(jié)果.

解答 解:由圖知,第n個等式的等式左邊第一個奇數(shù)是2n-1,故n個連續(xù)奇數(shù)的和
故有n×$\frac{2n-1+2n-1+2(n-1)}{2}$=n×(3n-2)=3n2-2n.
故答案為3n2-2n.

點評 本題考查歸納推理,解題的關(guān)鍵是歸納出規(guī)律:第n個等式左邊是n個奇數(shù)的和,第一個奇數(shù)是2n-1,這此奇數(shù)組成一個公式差為2的等差數(shù)列.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.使不等式a2+b2+2>λ(a+b)對任意的正數(shù)a,b恒成立的實數(shù)λ的取值范圍是(-∞,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知拋物線C1:y2=2px(p>0)與雙曲線C2:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0.b>0)有公共焦點F,且在第一象限的交點為P(3,2$\sqrt{6}$).
(1)求拋物線C1,雙曲線C2的方程;
(2)過點F且互相垂直的兩動直線被拋物線C1截得的弦分別為AB,CD,弦AB、CD的中點分別為G、H,探究直線GH是否過定點,若GH過定點,求出定點坐標;若直線GH不過定點,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,經(jīng)過村莊A有兩條互相垂直的筆直公路AB和AC,根據(jù)規(guī)劃擬在兩條公路圍成的直角區(qū)域內(nèi)建一工廠P,為了倉庫存儲和運輸方便,在兩條公路上分別建兩個倉庫M,N(異于村莊A,將工廠P及倉庫M,N近似看成點,且M,N分別在射線AB,AC上),要求MN=2,PN=1(單位:km),PN⊥MN.
(1)設(shè)∠AMN=θ,將工廠與村莊的距離PA表示為θ的函數(shù),記為l(θ),并寫出函數(shù)l(θ)的定義域;
(2)當(dāng)θ為何值時,l(θ)有最大值?并求出該最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知實數(shù)x,y滿足$\left\{\begin{array}{l}x-y+1≥0\\ x-3y-1≤0\\ x≤1\end{array}\right.$,則z=3x-y的最大值為( 。
A.-5B.1C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓C的離心率為$\frac{{\sqrt{3}}}{2}$,F(xiàn)1,F(xiàn)2分別為橢圓的左右焦點,P為橢圓上任意一點,△PF1F2的周長為$4+2\sqrt{3}$,直線l:y=kx+m(k≠0)與橢圓C相交于A,B兩點.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若直線l與圓x2+y2=1相切,過橢圓C的右焦點F2作垂直于x軸的直線,與橢圓相交于M,N兩點,與線段AB相交于一點(與A,B不重合).求四邊形MANB面積的最大值及取得最大值時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.從某小學(xué)隨機抽取100名同學(xué),將他們的身高(單位:厘米)數(shù)據(jù)繪制成頻率分布直方圖(如圖).若要從身高在[100,110),[110,120),[120,130)三組內(nèi)的學(xué)生中,用分層抽樣的方法選取28人參加一項活動,則從身高在[120,130)內(nèi)的學(xué)生中選取的人數(shù)應(yīng)為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.2016年微信用戶數(shù)量統(tǒng)計顯示,微信注冊用戶數(shù)量已經(jīng)突破9.27億.微信用戶平均年齡只有26歲,97.7%的用戶在50歲以下,86.2%的用戶在18-36歲之間.為調(diào)查大學(xué)生這個微信用戶群體中每人擁有微信群的數(shù)量,現(xiàn)從北京市大學(xué)生中隨機抽取100位同學(xué)進行了抽樣調(diào)查,結(jié)果如下:
微信群數(shù)量頻數(shù)頻率
0至5個00
6至10個300.3
11至15個300.3
16至20個ac
20個以上5b
合計1001
(Ⅰ)求a,b,c的值;
(Ⅱ)若從這100位同學(xué)中隨機抽取2人,求這2人中恰有1人微信群個數(shù)超過15個的概率;
(Ⅲ)以這100個人的樣本數(shù)據(jù)估計北京市的總體數(shù)據(jù)且以頻率估計概率,若從全市大學(xué)生中隨機抽取3人,記X表示抽到的是微信群個數(shù)超過15個的人數(shù),求X的分布列和數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.觀察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,則13+23+33+43+53+63=212

查看答案和解析>>

同步練習(xí)冊答案