分析 根據(jù)題意做出圖形,再根據(jù)直角三角形的知識和勾股定理即可求出.
解答 解:過點P分別做PA⊥OM,PB⊥ON,延長BP延長線與AM交于點C,
由∠MON=60°,
∴∠ACB=30°,
又AP=1,
∴CP=2AP=2,又BP=2,
∴BC=BP+CP=2+2=4,
在直角三角形ABF中,
tan∠OCB=tan30°=$\frac{OB}{BC}$,
∴OB=BCtan30°=4×$\frac{\sqrt{3}}{3}$=$\frac{4\sqrt{3}}{3}$,
在直角三角形OBP中,根據(jù)勾股定理得:OP=$\sqrt{O{B}^{2}+B{P}^{2}}$=$\frac{2\sqrt{21}}{3}$.
故答案為$\frac{2\sqrt{21}}{3}$
點評 此題考查了解三角形的運算,涉及的知識有:直角三角形中30°角所對的直角邊等于斜邊的一半的性質(zhì),銳角三角函數(shù)以及勾股定理,其中作出輔助線是本題的突破點,熟練掌握直角三角形的性質(zhì)及銳角三角函數(shù)定義是解本題的關鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分非必要 | B. | 必要非充分 | ||
C. | 充要 | D. | 既非充分也非必要 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 指數(shù)函數(shù) | B. | 對數(shù)函數(shù) | C. | 一次函數(shù) | D. | 余弦函數(shù) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 8$\sqrt{3}$ | B. | $\frac{80}{3}$ | C. | 16$\sqrt{3}$ | D. | 32 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{1}{3}\overrightarrow{OA}+\frac{2}{3}\overrightarrow{OB}$ | B. | $\frac{2}{3}\overrightarrow{OA}-\frac{1}{3}\overrightarrow{OB}$ | C. | $-\overrightarrow{OA}+2\overrightarrow{OB}$ | D. | $2\overrightarrow{OA}-\overrightarrow{OB}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com