13.已知O、A、B是平面上的三個(gè)點(diǎn),直線AB上有一個(gè)點(diǎn)C,滿足$2\overrightarrow{AC}+\overrightarrow{CB}=\overrightarrow 0$,則$\overrightarrow{OC}$=(  )
A.$-\frac{1}{3}\overrightarrow{OA}+\frac{2}{3}\overrightarrow{OB}$B.$\frac{2}{3}\overrightarrow{OA}-\frac{1}{3}\overrightarrow{OB}$C.$-\overrightarrow{OA}+2\overrightarrow{OB}$D.$2\overrightarrow{OA}-\overrightarrow{OB}$

分析 根據(jù)平面向量的基本定理,把一個(gè)向量用平面上的兩個(gè)不共線的向量來(lái)表示,這兩個(gè)不共線的向量作為一組基底參與向量的運(yùn)算,注意題目給的等式的應(yīng)用

解答 解:$\overrightarrow{OC}$=$\overrightarrow{OB}$+$\overrightarrow{BC}$=$\overrightarrow{OB}$+2$\overrightarrow{AC}$=$\overrightarrow{OB}$+2($\overrightarrow{OC}$-$\overrightarrow{OA}$),
∴$\overrightarrow{OC}$=2$\overrightarrow{OA}$-$\overrightarrow{OB}$,
故選:D

點(diǎn)評(píng) 本題是向量之間的運(yùn)算,運(yùn)算過(guò)程簡(jiǎn)單,但應(yīng)用廣泛,向量具有代數(shù)特征和幾何特征,借助于向量可以實(shí)現(xiàn)某些代數(shù)問(wèn)題與幾何問(wèn)題的相互轉(zhuǎn)化.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知f(tanx)=sin2x-sinx•cosx,則f(2)=( 。
A.2B.-2C.$\frac{2}{5}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=cos2x+asinx+2a-1,a∈R.
(1)當(dāng)a=1時(shí),求函數(shù)的最值并求出對(duì)應(yīng)的x值;
(2)如果對(duì)于區(qū)間$[-\frac{π}{2},\frac{π}{2}]$上的任意一個(gè)x,都有f(x)≤5恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在60°角內(nèi)有一點(diǎn)P,到兩邊的距離分別為1cm和2cm,則P到角頂點(diǎn)的距離為$\frac{2\sqrt{21}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.直線$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=-3\sqrt{3}+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù))和圓x2+y2=16交于A,B兩點(diǎn),則線段AB的中點(diǎn)坐標(biāo)為( 。
A.(3,-3)B.$(-\sqrt{3},3)$C.$(\sqrt{3},-3)$D.$(3,-\sqrt{3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知${({1-2x})^7}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_7}{x^7}$,則|a0|+|a1|+|a2|+…+|a7|=2187.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)=$\frac{2lnx+{a}^{2}}{x}$+bx-2a(a∈R),其中b=${∫}_{0}^{\frac{π}{2}}$(2sin$\frac{t}{2}$•cos$\frac{t}{2}$)dt,若?x∈(1,2),使得f′(x)•x+f(x)>0成立,則實(shí)數(shù)a的取值范圍為( 。
A.(-∞,1)B.(0,1]C.(-∞,$\frac{5}{2}$)D.(-∞,$\frac{5}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)x1=4,x2=5,x3=6,則該樣本的標(biāo)準(zhǔn)差為( 。
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{5}}{3}$D.$\frac{\sqrt{7}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.高為$\sqrt{2}$的四棱錐S-ABCD的底面是邊長(zhǎng)為1的正方形,點(diǎn)S、A、B、C、D均同一球面上,底面ABCD的中心為O1,球心O到底面ABCD的距離為$\frac{{\sqrt{2}}}{2}$,則異面直線SO1與AB所成角的余弦值的范圍為[0,$\frac{\sqrt{10}}{10}$].

查看答案和解析>>

同步練習(xí)冊(cè)答案