分析 法一:由已知得$\frac{{x}_{n+1}}{{x}_{n}}=10$,${x}_{1}=\frac{9}{1{0}^{100}-1}$,從而得到x101+x102+…+x200=10100,由此能求出lg(x101+x102+…+x200).
法二:由已知得$\frac{{x}_{n+1}}{{x}_{n}}=10$,從而利用等比數列的性質,可知,x101+x102+…+x200=10100(x1+x2+x3+…+x100)=10100,由此能求出lg(x101+x102+…+x200).
解答 解法一:∵數列{xn}滿足$lg{x_{n+1}}=1+lg{x_n}({n∈{N^*}})$=lg(10xn),
∴$\frac{{x}_{n+1}}{{x}_{n}}=10$,
∵x1+x2+x3+…+x100=1,
∴$\frac{{x}_{1}(1-1{0}^{100})}{1-10}$=1,∴${x}_{1}=\frac{9}{1{0}^{100}-1}$,
${x}_{101}=\frac{9}{1{0}^{100}-1}×1{0}^{100}$,
∴x101+x102+…+x200=$\frac{\frac{9}{1{0}^{100}-1}×1{0}^{100}(1-1{0}^{100})}{1-10}$=10100,
則lg(x101+x102+…+x200)=lg10100=100.
故答案為:100.
解法二:∵數列{xn}滿足$lg{x_{n+1}}=1+lg{x_n}({n∈{N^*}})$=lg(10xn),
∴$\frac{{x}_{n+1}}{{x}_{n}}=10$,
∵x1+x2+x3+…+x100=1,
∴等比數列的性質,可知,x101+x102+…+x200=10100(x1+x2+x3+…+x100)=10100,
∴l(xiāng)g(x101+x102+…+x200)=lg10100=100.
故答案為:100.
點評 本題考查對數值的求法,是基礎題,解題時要認真審題,注意等比數列的性質的合理運用.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | f′(x)>0,g′(-x)>0 | B. | f′(x)>0,g′(-x)<0 | C. | f′(x)<0,g′(-x)>0 | D. | f′(x)<0,g′(-x)<0 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -2或1 | B. | 0或1 | C. | -2或-1 | D. | 0或-2 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{3π}{4}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 3 | B. | $\frac{3}{2}$ | C. | 1 | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com