18.已知正整數(shù)m的3次冪有如下分解規(guī)律:13=1;23=3+5;33=7+9+11;        43=13+15+17+19;…若m3(m∈N+)的分解中最小的數(shù)為91,則m的值為10.

分析 由題意知,n的三次方就是n個(gè)連續(xù)奇數(shù)相加,且從2開始,這些三次方的分解正好是從奇數(shù)3開始連續(xù)出現(xiàn),由此規(guī)律即可建立m3(m∈N*)的分解方法,從而求出m的值.

解答 解:由題意,從23到m3,正好用去從3開始的連續(xù)奇數(shù)共2+3+4+…+m=$\frac{(m+2)(m-1)}{2}$個(gè),
91是從3開始的第45個(gè)奇數(shù)
當(dāng)m=9時(shí),從23到93,用去從3開始的連續(xù)奇數(shù)共$\frac{(9+2)(9-1)}{2}$=44個(gè)
當(dāng)m=10時(shí),從23到103,用去從3開始的連續(xù)奇數(shù)共$\frac{(10+2)(10-1)}{2}$=54個(gè).
故m=10.
故答案為:10

點(diǎn)評 本題考查歸納推理,求解的關(guān)鍵是根據(jù)歸納推理的原理歸納出結(jié)論,其中分析出分解式中項(xiàng)數(shù)及每個(gè)式子中各數(shù)據(jù)之間的變化規(guī)律是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.中國詩詞大會的播出引發(fā)了全民的讀書熱,某小學(xué)語文老師在班里開展了一次詩詞默寫比賽,班里40名學(xué)生得分?jǐn)?shù)據(jù)的莖葉圖如圖所示.若規(guī)定得分不小于85分的學(xué)生得到“詩詞達(dá)人”的稱號,小于85分且不小于70分的學(xué)生得到“詩詞能手”的稱號,其他學(xué)生得到“詩詞愛好者”的稱號,根據(jù)該次比賽的成就按照稱號的不同進(jìn)行分層抽樣抽選10名學(xué)生,則抽選的學(xué)生中獲得“詩詞能手”稱號的人數(shù)為(  )
A.2B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.一個(gè)袋中裝有3個(gè)紅球和1個(gè)白球,現(xiàn)從袋中取出1球,然后放回袋中再取出一球,則兩次取出的球顏色相同的概率是$\frac{5}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若直線y=3x與雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)有公共點(diǎn),則雙曲線的離心率的取值范圍為(  )
A.$(1,\sqrt{10})$B.$(\sqrt{10},+∞)$C.$({1,\sqrt{10}}]$D.$[{\sqrt{10}}\right.,+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知z1=1-3i,z2=3+i,其中i是虛數(shù)單位,則$\frac{{\overline{z_1}}}{z_2}$的虛部為( 。
A.-1B.$\frac{4}{5}$C.-iD.$\frac{4}{5}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.有人在路邊設(shè)局,宣傳牌上寫有“擲骰子,贏大獎”.其游戲規(guī)則是這樣的:你可以在1,2,3,4,5,6點(diǎn)中任選一個(gè),并押上賭注m元,然后擲1顆骰子,連續(xù)擲3次,若你所押的點(diǎn)數(shù)在3次擲骰子過程中出現(xiàn)1次,2次,3次,那么原來的賭注仍還給你,并且莊家分別給予你所押賭注的1倍,2倍,3倍的獎勵.如果3次擲骰子過程中,你所押的點(diǎn)數(shù)沒出現(xiàn),那么你的賭注就被莊家沒收.
(1)求擲3次骰子,至少出現(xiàn)1次為5點(diǎn)的概率;
(2)如果你打算嘗試一次,請計(jì)算一下你獲利的期望值,并給大家一個(gè)正確的建議.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知數(shù)列{xn}滿足$lg{x_{n+1}}=1+lg{x_n}({n∈{N^*}})$,且x1+x2+x3+…+x100=1,則lg(x101+x102+…+x200)=100.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.當(dāng)a$<\frac{1}{2}$時(shí),關(guān)于x的不等式(ex-a)x-ex+2a<0的解集中有且只有兩個(gè)整數(shù)值,則實(shí)數(shù)a的取值范圍是[$\frac{3}{{4e}^{2}}$,$\frac{2}{3e}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦點(diǎn)分別為F1、F2,過F2的直線交雙曲線右支于P,Q兩點(diǎn),且PQ⊥PF1,若$|PQ|=\frac{5}{12}|P{F_1}|$,則雙曲線離心率e為( 。
A.$\frac{{\sqrt{10}}}{2}$B.$\frac{{\sqrt{37}}}{2}$C.$\frac{{\sqrt{10}}}{5}$D.$\frac{{\sqrt{37}}}{5}$

查看答案和解析>>

同步練習(xí)冊答案