20.在Rt△ABC中,$A=\frac{π}{2}$,AB=4,AC=3,則$\overrightarrow{CA}•\overrightarrow{CB}$=9.

分析 由題意畫(huà)出圖形,結(jié)合向量的加法法則化簡(jiǎn)求值.

解答 解:如圖,

∵$A=\frac{π}{2}$,AB=4,AC=3,
∴$\overrightarrow{CA}•\overrightarrow{CB}=\overrightarrow{CA}•(\overrightarrow{CA}+\overrightarrow{AB})={\overrightarrow{CA}}^{2}+\overrightarrow{CA}•\overrightarrow{AB}=9$.
故答案為:9.

點(diǎn)評(píng) 本題考查平面向量數(shù)量積的運(yùn)算,考查向量的加法法則,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知I是虛數(shù)單位,若(2+i)(m-2i)是實(shí)數(shù),則實(shí)數(shù)m=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.如圖,等腰梯形AMNB內(nèi)接于半圓O,直徑AB=4,MN=2,MN的中點(diǎn)為C,則$\overrightarrow{AM}$•$\overrightarrow{BC}$的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=xlnx-$\frac{a}{2}$x2-x+a,a∈R
(1)當(dāng)a=0時(shí),求函數(shù)f(x)的極值;
(2)若函數(shù)f(x)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn)(極值點(diǎn)是指函數(shù)取極值時(shí)對(duì)應(yīng)的自變量的值),記為x1,x2,且x1<x2
(。┣骯的取值范圍;
(ⅱ)若不等式e1+λ<x1•x${\;}_{2}^{λ}$恒成立,求正實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知$tan({α-β})=\frac{4}{3}$.
(1)求cos(α-β)的值;
(2)若$0<α<\frac{π}{2},-\frac{π}{2}<β<0,sinβ=-\frac{5}{13}$,求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知數(shù)列{an}滿足${a_n}=\left\{\begin{array}{l}2{a_{n-1}}-2,n=2k+1\\{a_{n-1}}+1,n=2k\end{array}\right.$(k∈N*),若a1=1,則S20=2056.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.某學(xué)校為解決教師的停車(chē)問(wèn)題,在校內(nèi)規(guī)劃了一塊場(chǎng)地,劃出一排12個(gè)停車(chē)位置,今有8輛不同的車(chē)需要停放,若要求剩余的4個(gè)空車(chē)位連在一起,則不同的停車(chē)方法有(  )
A.${A}_{9}^{9}$種B.${A}_{12}^{8}$種C.8${A}_{8}^{8}$種D.2${A}_{8}^{8}$${A}_{4}^{4}$種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.直線x-y=0的傾斜角為( 。
A.1B.$\frac{π}{4}$C.-1D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.向面積為S的平行四邊形ABCD內(nèi)任投一點(diǎn)M,則△MCD的面積小于$\frac{S}{3}$的概率為$\frac{2}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案