5.已知α,β為銳角,且$tanα=\frac{1}{7}$,$cos({α+β})=\frac{{2\sqrt{5}}}{5}$,則cos2β=( 。
A.$\frac{3}{5}$B.$\frac{2}{3}$C.$\frac{4}{5}$D.$\frac{{7\sqrt{2}}}{10}$

分析 首先由已知求出α,α+β的其它三角函數(shù)值,然后由β=α+β-α,求出β的三角函數(shù)值,再借助于倍角公式求值.

解答 解:由已知α為銳角,且$tanα=\frac{1}{7}$,得到sinα=$\frac{\sqrt{2}}{10}$,cosα=$\frac{7\sqrt{2}}{10}$,
由$cos({α+β})=\frac{{2\sqrt{5}}}{5}$,得到sin(α+β)=$\frac{\sqrt{5}}{5}$,
所以cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα
=$\frac{2\sqrt{5}}{5}×\frac{7\sqrt{2}}{10}+\frac{\sqrt{5}}{5}×\frac{\sqrt{2}}{10}=\frac{15\sqrt{10}}{50}=\frac{3\sqrt{10}}{10}$,
所以cos2β=2cos2β-1=$2×\frac{9}{10}-1=\frac{4}{5}$;
故選C.

點評 本題考查了三角函數(shù)式的化簡求值;熟練運用兩角和與差的三角函數(shù)以及角的等價變化、倍角公式是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知i為虛數(shù)單位,若z1=1+2i,z2=1-i,則復(fù)數(shù)$\frac{z_1}{z_2^2}$在復(fù)平面內(nèi)對應(yīng)點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在四棱錐P-ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥DC,AD=DC=PA=2,BC=4,E為PA的中點,M為棱BC上一點.
(Ⅰ)當(dāng)BM為何值時,有EM∥平面PCD;
(Ⅱ)在(Ⅰ)的條件下,求點P到平面DEM的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)集合$A=\left\{{x|{{log}_2}({{x^2}-x-4})>1}\right\}$,$B=\left\{{x|\sqrt{x-2}<2}\right\}$,則A∩B=( 。
A.(3,6)B.(-∞,-2)∪(3,6)C.(3,4)D.(-∞,-2)∪(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知長方體ABCD-A1B1C1D1中,$A{A_1}=AB=\sqrt{3}$,AD=1,則異面直線B1C和C1D所成角的余弦值為( 。
A.$\frac{{\sqrt{6}}}{4}$B.$\frac{{\sqrt{6}}}{3}$C.$\frac{{\sqrt{2}}}{6}$D.$\frac{{\sqrt{3}}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知點P是拋物線y2=4x上的一點,拋物線的焦點為F,若|PF|=5,直線PF的斜率為k,則|k|=$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.將直角三角形ABC沿斜邊上的高AD折成120°的二面角,已知直角邊AB=4$\sqrt{3}$,AC=4$\sqrt{6}$,那么下面說法正確的是( 。
A.平面ABC⊥平面ACD
B.四面體D-ABC的體積是$\frac{16}{3}\sqrt{6}$
C.二面角A-BC-D的正切值是$\frac{{\sqrt{42}}}{5}$
D.BC與平面ACD所成角的正弦值是$\frac{{\sqrt{21}}}{14}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知△ABC的外接圓半徑為R,角A,B,C所對的邊分別為a,b,c,若asinBcosC+$\frac{3}{2}$csinC=$\frac{2}{R}$,則△ABC面積的最大值為( 。
A.$\frac{2}{5}$B.$\frac{4}{5}$C.$\frac{2\sqrt{5}}{5}$D.$\frac{12}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知$\frac{1}{sinφ}$+$\frac{1}{cosφ}$=2$\sqrt{2}$,若φ∈(0,$\frac{π}{2}$),則${∫}_{-1}^{tanφ}$(x2-2x)dx=( 。
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

同步練習(xí)冊答案