14.設(shè)集合M={-1,1},N={x|$\frac{1}{x}$<2},則下列結(jié)論正確的是( 。
A.N⊆MB.M⊆NC.M∩N=ND.M∩N={1}

分析 化簡(jiǎn)集合N,即可得出結(jié)論.

解答 解:∵M(jìn)={-1,1},N={x|$\frac{1}{x}$<2}={x|x<0或x>$\frac{1}{2}$},
∴M⊆N,
故選B.

點(diǎn)評(píng) 本題考查集合的關(guān)系,考查不等式的解法,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.在△ABC中,內(nèi)角A、B、C的對(duì)邊分別是a、b、c,若c=2a,sinB=$\sqrt{3}$sinA,則B=$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.化簡(jiǎn):$\frac{1-cosθ-sinθ}{1+cosθ-sinθ}$=-tan$\frac{θ}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知橢圓M:$\frac{{x}^{2}}{{a}^{2}}$+y2=1,圓C:x2+y2=6-a2在第一象限有公共點(diǎn)P,設(shè)圓C在點(diǎn)P處的切線斜率為k1,橢圓M在點(diǎn)P處的切線斜率為k2,則$\frac{{k}_{1}}{{k}_{2}}$的取值范圍為(  )
A.(1,6)B.(1,5)C.(3,6)D.(3,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.高三某班15名學(xué)生一次模擬考試成績(jī)用莖葉圖表示如圖1,執(zhí)行圖2所示的程序框圖,若輸入的ai(i=1,2,…,15)分別為這15名學(xué)生的考試成績(jī),則輸出的結(jié)果為( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知點(diǎn)(x1,y1)在函數(shù)y=sin2x圖象上,點(diǎn)(x2,y2)在函數(shù)y=3的圖象上,則(x1-x22+(y1-y22的最小值為(  )
A.2B.3C.4D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知實(shí)數(shù)2,m,8構(gòu)成一個(gè)等差數(shù)列,則圓錐曲線$\frac{{x}^{2}}{m}$+y2=1的焦距為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.一個(gè)幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.$\frac{3+\sqrt{3}+2\sqrt{2}}{2}$B.$\frac{1+\sqrt{3}+\sqrt{2}}{2}$C.$\frac{1+\sqrt{3}+2\sqrt{2}}{2}$D.$\frac{3}{2}$+2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若函數(shù)y=2x3+1與y=3x2-b的圖象在一個(gè)公共點(diǎn)處的切線相同,則實(shí)數(shù)b=0或-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案