16.已知x∈R,下列不等式中正確的是( 。
A.2x<3xB.$\frac{1}{{{x^2}-x+1}}$>$\frac{1}{{{x^2}+x+1}}$
C.$\frac{1}{{{x^2}+1}}$>$\frac{1}{{{x^2}+2}}$D.2|x|<x2+1

分析 對于A,B,D舉反例即可判斷,對于C根據(jù)不等式的性質(zhì)即可判斷.

解答 解:對于A,當x=-1時,則不成立,
對于B:當x=0時,則不成立,
對于C:因為x2+2>x2+1≥1,所以$\frac{1}{{{x^2}+1}}$>$\frac{1}{{{x^2}+2}}$,故C正確,
對于D:當x=1時,則不成立,
故選:C

點評 本題考查了不等式的性質(zhì),關(guān)鍵是采用排除法,屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{log_2}(-x),x<0\\ x-2,x≥0\end{array}\right.$若函數(shù)g(x)=a-|f(x)|有四個零點x1,x2,x3,x4,且x1<x2<x3<x4,則ax1x2+$\frac{{{x_3}+{x_4}}}{a}$的取值范圍是[4,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.用一根長1m的輕質(zhì)細繩將一副質(zhì)量為1kg的畫框?qū)ΨQ懸掛在墻壁上,如果已知繩能承受的最大張力為10N,為使繩不斷裂,畫框上兩個掛釘?shù)拈g距最大為(g取10m/s2)$\frac{\sqrt{3}}{2}$m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.在極坐標系中,圓ρ=$\sqrt{3}$cosθ-sinθ(0≤θ<2π)的圓心的極坐標是( 。
A.$({1,\frac{π}{6}})$B.$({1,\frac{5π}{6}})$C.$({1,\frac{7π}{6}})$D.$({1,\frac{11π}{6}})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.在平面直角坐標系中,直線l經(jīng)過點P(1,1),傾斜角α=$\frac{π}{6}$,現(xiàn)以平面直角坐標系中的坐標原點為極點,x 軸的非負半軸為極軸建立極坐標系.若曲線C 的極坐標方程為ρsin2θ=8cosθ.
(1)寫出直線l 的參數(shù)方程及曲線C 的直角坐標方程;
(2)設直線l與曲線C相交于 A、B兩點,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知曲線C的參數(shù)方程是$\left\{{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}}$(θ為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,A,B的極坐標分別為A(2,π),B(2,$\frac{π}{3}$).
(1)求直線AB的極坐標方程;
(2)設M為曲線C上的點,求點M到直線AB距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.傾斜角為45o的直線l經(jīng)過y2=4x的焦點F,且與拋物線相交于A、B兩點,則線段|AB|=8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.若曲線f(x)=f′(2)lnx-f(1)x+2x2在點($\frac{1}{2}$,f($\frac{1}{2}$))處的切線為l,則切線l的斜率為29.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若復數(shù)z=cos$\frac{π}{12}$+isin$\frac{π}{12}$(i是虛數(shù)單位),復數(shù)z2的實部虛部分別為a,b,則下列結(jié)論正確的是( 。
A.ab<0B.a2+b2≠1C.$\frac{a}=\sqrt{3}$D.$\frac{a}=\sqrt{3}$

查看答案和解析>>

同步練習冊答案