10.已知函數(shù)f(x)=-x2+ax-b,若a,b都是從[0,4]上任取的一個數(shù),則滿足f(1)>0時的概率( 。
A.$\frac{1}{32}$B.$\frac{9}{32}$C.$\frac{31}{32}$D.$\frac{23}{32}$

分析 本題利用幾何概型求解即可.在a-o-b坐標系中,畫出f(1)>0對應 的區(qū)域,和a、b都是在區(qū)間[0,4]內(nèi)表示的區(qū)域,計算它們的比值即得.

解答 解:f(1)=-1+a-b>0,即a-b>1,
如圖,A(1,0),B(4,0),C(4,3),
S△ABC=$\frac{9}{2}$,P=$\frac{\frac{9}{2}}{4×4}$=$\frac{9}{32}$,
故選:B.

點評 本題主要考查幾何概型.如果每個事件發(fā)生的概率只與構成該事件區(qū)域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型,簡稱為幾何概型. 古典概型與幾何概型的主要區(qū)別在于:幾何概型是另一類等可能概型,它與古典概型的區(qū)別在于試驗的結果不是有限個.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

20.已知命題p:“?x∈R,x2-2x+2>0”,則¬p是( 。
A.?x∈R,x2-2x+2≤0B.?x0∈R,$x_0^2-2{x_0}+2>0$
C.?x0∈R,$x_0^2-2{x_0}+2<0$D.?x0∈R,$x_0^2-2{x_0}+2≤0$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知集合M={x|-1≤x<3 },N={x|2<x≤5},則M∪N={x|-1≤x≤5}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知過T(3,-2)的直線l與拋物線y2=4x交于P,Q兩點,點A(1,2)
(1)若直線l的斜率為1,求弦PQ的長
(2)證明直線AP與直線AQ的斜率乘積恒為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知圓錐的表面積等于12πcm2,其側面展開圖是一個半圓,則底面圓的半徑為( 。
A.1cmB.2cmC.3cmD.$\frac{3}{2}cm$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知△PDQ中,A,B分別為邊PQ上的兩個三等分點,BD為底邊PQ上的高,AE∥DB,如圖1,將△PDQ分別沿AE,DB折起,使得P,Q重合于點C.AB中點為M,如圖2.
(Ⅰ)求證:CM⊥EM;
(Ⅱ)若直線DM與平面ABC所成角的正切值為2,求二面角B-CD-E的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知在邊長為4的等邊△ABC(如圖1所示)中,MN∥BC,E為BC的中點,連接AE交MN于點F,現(xiàn)將△AMN沿MN折起,使得平面AMN⊥平面MNCB(如圖2所示).
(1)求證:平面ABC⊥平面AEF;
(2)若SBCNM=3S△AMN,求直線AB與平面ANC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.將半徑為R的半圓形鐵皮制作成一個無蓋圓錐形容器(不計損耗),則其容積為( 。
A.$\frac{{\sqrt{3}}}{24}π{R^3}$B.$\frac{{\sqrt{3}}}{8}π{R^3}$C.$\frac{{\sqrt{5}}}{24}π{R^3}$D.$\frac{{\sqrt{5}}}{8}π{R^3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.一位同學一次投籃的命中率試0.4,我們通過隨機模擬的方式來判斷這位同學3次投籃的命中情況,用表示命中,用0,1,2,3表示不命中,計算機產(chǎn)生20組隨機數(shù):
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
則這位同學恰有兩次命中的概率是( 。
A.$\frac{7}{20}$B.$\frac{9}{20}$C.$\frac{2}{5}$D.$\frac{1}{5}$

查看答案和解析>>

同步練習冊答案