【題目】若集合的子集A中的每個(gè)元素均可表為兩個(gè)自然數(shù)(允許相同)的平方和,求集合A中元素個(gè)數(shù)的最大值.

【答案】79

【解析】

注意到,不超過(guò)200的平方數(shù)為.

首先,中的每個(gè)數(shù)可表為的形式,這種數(shù)共有14個(gè);

中的每一對(duì)數(shù)(允許相同)的和在集合M中,這種數(shù)有個(gè),

其中,形式的數(shù)10個(gè), 形式的數(shù)個(gè).

其次,形式的數(shù)8個(gè),

形式的數(shù)7個(gè),

形式的數(shù)5個(gè),

形式的數(shù)2個(gè),

共計(jì)22個(gè).

再考慮重復(fù)的情形:注意到,若

.

不超過(guò)40且能表示為兩個(gè)不同正整數(shù)的平方和的數(shù)有5、10、13、17、20、25、26、29、34、37、40,

該組中的每個(gè)數(shù)與5的積,以及均在集合M中,且均可用兩種方式表示為平方和,

故各被計(jì)算了兩次,累計(jì)有12次重復(fù)(10、13、17、20與10的積已包含在以上乘積組中).

因此,集合A中元素個(gè)數(shù)的最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖1是由矩形和菱形組成的一個(gè)平面圖形,其中, ,將其沿折起使得重合,連結(jié),如圖2.

(1)證明圖2中的四點(diǎn)共面,且平面平面

(2)求圖2中的四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的有(

①在回歸分析中,可以借助散點(diǎn)圖判斷兩個(gè)變量是否呈線性相關(guān)關(guān)系.

②在回歸分析中,可以通過(guò)殘差圖發(fā)現(xiàn)原始數(shù)據(jù)中的可疑數(shù)據(jù),殘差平方和越小,模型的擬合效果越好.

③在回歸分析模型中,相關(guān)系數(shù)的絕對(duì)值越大,說(shuō)明模型的擬合效果越好.

④在回歸直線方程中,當(dāng)解釋變量每增加1個(gè)單位時(shí),預(yù)報(bào)變量增加0.1個(gè)單位.

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2015年推出一種新型家用轎車,購(gòu)買時(shí)費(fèi)用為16.9萬(wàn)元,每年應(yīng)交付保險(xiǎn)費(fèi)、養(yǎng)路費(fèi)及汽油費(fèi)共1.2萬(wàn)元,汽車的維修費(fèi)為:第一年無(wú)維修費(fèi)用,第二年為0.2萬(wàn)元,從第三年起,每年的維修費(fèi)均比上一年增加0.2萬(wàn)元.

(I)設(shè)該輛轎車使用n年的總費(fèi)用(包括購(gòu)買費(fèi)用、保險(xiǎn)費(fèi)、養(yǎng)路費(fèi)、汽油費(fèi)及維修費(fèi))為f(n),求f(n)的表達(dá)式;

(II)這種汽車使用多少報(bào)廢最合算(即該車使用多少年,年平均費(fèi)用最少)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將各位數(shù)字和為8的全體正整數(shù)按自小到大的順序排成一個(gè)數(shù)列,稱為P數(shù)列.2015為其中第________項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前n項(xiàng)和為,且滿足,數(shù)列中,,對(duì)任意正整數(shù).

1)求數(shù)列的通項(xiàng)公式;

2)是否存在實(shí)數(shù),使得數(shù)列是等比數(shù)列?若存在,請(qǐng)求出實(shí)數(shù)及公比q的值,若不存在,請(qǐng)說(shuō)明理由;

3)求數(shù)列n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,且過(guò)點(diǎn).

(1)求橢圓C的標(biāo)準(zhǔn)方程;

2)點(diǎn)P是橢圓上異于短軸端點(diǎn)A,B的任意一點(diǎn),過(guò)點(diǎn)P軸于Q,線段PQ的中點(diǎn)為M.直線AM與直線交于點(diǎn)ND為線段BN的中點(diǎn),設(shè)O為坐標(biāo)原點(diǎn),試判斷以OD為直徑的圓與點(diǎn)M的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐底面,底面為等腰梯形,,,,,點(diǎn)E邊上的點(diǎn),.

1)求證:平面;

2)若,求點(diǎn)E到平面的距離 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)設(shè)的極值點(diǎn).求,并求的單調(diào)區(qū)間;

2)證明:當(dāng)時(shí),

查看答案和解析>>

同步練習(xí)冊(cè)答案