12.已知函數(shù)f(x)=2x+2-x
(1)用定義法證明:函數(shù)f(x)是區(qū)間(0,+∞)上的增函數(shù);
(2)若x∈[-1,2],求函數(shù)g(x)=2x[f(x)-2]-3的值域.

分析 (1)直接利用函數(shù)單調(diào)性的定義證明即可;
(2)已知f(x)得到g(x)=(2x-1)2-3,利用二次函數(shù)的性質(zhì)求值域即可.

解答 (1)證明:設(shè)x2>x1>0,則:
$f({x_1})-f({x_2})={2^{x_1}}+{2^{-{x_1}}}-({2^{x_2}}+{2^{-{x_2}}})$
=$({2^{x_1}}-{2^{x_2}})(1-\frac{1}{{{2^{x_1}}{2^{x_2}}}})$
=$\frac{{({2^{x_1}}-{2^{x_2}})({2^{{x_1}+{x_2}}}-1)}}{{{2^{{x_1}+{x_2}}}}}$,
∵x2>x1>0,∴${2^{x_1}}-{2^{x_2}}<0$,${2^{{x_1}+{x_2}}}-1>0$,
∴f(x1)-f(x2)<0,即f(x1)<f(x2),
∴函數(shù)f(x)是區(qū)間(0,+∞)上的增函數(shù).
(2)∵x∈[-1,2],∴${2^x}∈[{\frac{1}{2},4}]$,g(x)=2x[f(x)-2]-3=(2x2-2•2x-2=(2x-1)2-3,
當(dāng)2x=1時(shí),g(x)min=-3;當(dāng)2x=4時(shí),g(x)max=6.
∴函數(shù)g(x)的值域?yàn)閇-3,6].

點(diǎn)評(píng) 本題主要考查了函數(shù)單調(diào)性的定義證明,以及利用二次函數(shù)的性質(zhì)求函數(shù)值域,屬中等題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)$f(x)=\frac{{1+a{x^2}}}{x+b}(a≠0)$是奇函數(shù),且函數(shù)f(x)的圖象過點(diǎn)(1,3).
(1)求實(shí)數(shù)a,b值;
(2)用定義證明函數(shù)f(x)在$(\frac{{\sqrt{2}}}{2},+∞)$上單調(diào)遞增;
(3)求函數(shù)[1,+∞)上f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)y=f(x)的圖象如圖所示,則函數(shù)y=f(6x)的零點(diǎn)個(gè)數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若$x{log_4}3=\frac{1}{2}$,則${log_2}{3^x}+{9^x}$等于(  )
A.3B.5C.7D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.某品牌汽車的月產(chǎn)能y(萬輛)與月份x(3<x≤12且x∈N)滿足關(guān)系式$y=a•{(\frac{1}{2})^{x-3}}+b$.現(xiàn)已知該品牌汽車今年4月、5月的產(chǎn)能分別為1萬輛和1.5萬輛,則該品牌汽車7月的產(chǎn)能為$\frac{15}{8}$萬輛.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)$y=\frac{1}{x-2}+lg({x+1})$的定義域是( 。
A.A(-1,+∞)B.(-1,2)∪(2,+∞)C.(-1,2)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=x-1,則不等式f(x)<0的解集為(  )
A.(-∞,-1)∪(0,1)B.(-∞,-1)∪(1,+∞)C.(-1,1)D.(-1,0)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.關(guān)于x的不等式|x-1|+|x+2|≥m在R上恒成立,則實(shí)數(shù)m的取值范圍為( 。
A.(1,+∞)B.(-∞,1]C.(3,+∞)D.(-∞,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=ln(x-2)-$\frac{{x}^{2}}{2a}$,(a為常數(shù)且a≠0),若f(x)在x0處取得極值,且x0∉[e+2,e2+2],而f(x)≥0在[e+2,e2+2]上恒成立,則a的取值范圍( 。
A.a≥e4+2e2B.a>e2+2eC.a≥e2+2eD.a>e4+2e2

查看答案和解析>>

同步練習(xí)冊(cè)答案