18.在△ABC中,若2B=A+C,求tanA+tanC-$\sqrt{3}$tanAtanC的值.

分析 利用三角形內(nèi)角公式求得A+C的值,再利用兩角和差的正切公式求得要求式子的值.

解答 解:△ABC中,若2B=A+C,∵A+B+C=π,則B=$\frac{π}{3}$,A+C=$\frac{2π}{3}$,
∴tanA+tanC-$\sqrt{3}$tanAtanC=tan(A+C)(1-tanAtanC)-$\sqrt{3}$tanAtanC
=-$\sqrt{3}$ (1-tanAtanC)-$\sqrt{3}$tanAtanC=-$\sqrt{3}$.

點(diǎn)評 本題主要考查三角形內(nèi)角公式、誘導(dǎo)公式、兩角和差的正切公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若$A=45°,a=\sqrt{2},b=\sqrt{3}$,則B等于(  )
A.30°B.60°C.30°或150°D.60°或120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.(1+x+x2)(1-x)10的展開式中,x10的系數(shù)為36.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若一個角兩邊和另一個角兩邊分別平行,一個角為45°,則另一個為45°或135°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若y=f(x)圖象有兩條對稱軸x=a,x=b,(a≠b),則y=f(x)必是周期函數(shù),且一周期為2|a-b|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,是某算法的程序框圖,當(dāng)輸出T>29時,正整數(shù)n的最小值是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{1}{2}$,橢圓E和拋物線y2=$\frac{9}{4}$x交于M,N兩點(diǎn),且直線MN恰好通過橢圓E的右焦點(diǎn)F2
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)已知橢圓E的左焦點(diǎn)為F1,左、右頂點(diǎn)分別為A,B,經(jīng)過點(diǎn)F1的直線l與橢圓E交于C,D兩點(diǎn),記△ABD與△ABC的面積分別為S1,S2,求|S1-S2|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知拋物線Г:y2=4px(p>0),AB為過拋物線Г焦點(diǎn)的弦,AB的中垂線交拋物線Г于點(diǎn)C,D.若$\overrightarrow{AC}$⊥$\overrightarrow{AD}$,則直線AB的方程為( 。
A.y=±(x-p)B.y=±2(x-p)C.y=±$\frac{2}{3}$(x-p)D.y=±$\frac{1}{2}$(x-p)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)f(x)=2x+2-3×4x,x∈(-∞,1)的值域?yàn)椋?4,$\frac{4}{3}$].

查看答案和解析>>

同步練習(xí)冊答案