【題目】已知.

1)證明處的切線恒過定點;

2)若有兩個極值點,求實數(shù)的取值范圍.

【答案】1)證明見解析;(2.

【解析】

1)先對函數(shù)求導,將代入導函數(shù)中可得切線的斜率,利用點斜式寫出切線方程化簡得,從而可知切線恒過點;

2)若有兩個極值點,則有兩個不同的正根,即有兩個零點,也就是的圖像與軸有兩個交點,然后對求導,討論導函數(shù)的正負,從而可求出單調(diào)區(qū)間,進而可得到的取值范圍

1)∵,所以

又因為,

所以處的切線方程

所以處的切線恒過定點.

2)∵,其中

,

,

時,,

單調(diào)遞增,

上至多有一個零點,

上至多有一個零點,

至多只有一個極值點,不合題意,舍去.

時,設,

,∴上單調(diào)遞減,

,,

,使得,即2,

時,,此時,

單調(diào)遞增,

時,,此時

單調(diào)遞減,

有極大值

,則

,單調(diào)遞減,不合題意,

,

,,

單調(diào)遞增,

,∴,

,

單調(diào)遞增,

,即

此時,

單調(diào)遞增,

,使得,

時,

,上單調(diào)遞減,

時,,

上單調(diào)遞增,

處取得極小值.

又∵,

單調(diào)遞減,,

又∵,∴,

,使得

時,,

上單調(diào)遞增,

時,,

,上單調(diào)遞減,

處取得極大值.

綜上所述,若有兩個極值點,則實數(shù)的取值范圍為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是單調(diào)函數(shù),則實數(shù)的取值范圍是_________;若存在實數(shù),使函數(shù)有三個零點,則實數(shù)的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的極值.

2,若不等式上恒成立,求的最大值.

3)是否存在實數(shù),使得函數(shù)上的值域為?如果存在,請給出證明;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】新型冠狀病毒蔓延以來,世界各國都在研制疫苗,某專家認為,某種抗病毒藥品對新型冠狀病毒具有抗病毒、抗炎作用,假如規(guī)定每天早上700和晚上700各服藥一次,每次服用該藥藥量700毫克具有抗病毒功效,若人的腎臟每12小時從體內(nèi)濾出這種藥的70%,該藥在人體內(nèi)含量超過1000毫克,就將產(chǎn)生副作用,若人長期服用這種藥,則這種藥__________(填“會”或者“不會”)對人體產(chǎn)生副作用.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】分形幾何是一門以不規(guī)則幾何形態(tài)為研究對象的幾何學,科赫曲線是比較典型的分形圖形,1904年瑞典數(shù)學家科赫第一次描述了這種曲線,因此將這種曲線稱為科赫曲線.其生成方法是:(I)將正三角形(圖(1))的每邊三等分,以每邊三等分后的中間的那一條線段為一邊,向形外作等邊三角形,并將這“中間一段”去掉,得到圖(2);(II)將圖(2)的每邊三等分,重復上述的作圖方法,得到圖(3);(Ⅲ)再按上述方法繼續(xù)做下去……,設圖(1)中的等邊三角形的邊長為1,并且分別將圖(1)、圖(2)、圖(3)、…、圖(n)、…中的圖形依次記作,,…,,…,設的周長為,則為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)在其定義域內(nèi)有兩個不同的極值點.

1)求的取值范圍;

2)設兩極值點分別為,,且,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),給出以下四個命題:

的圖象關于軸對稱;

上是減函數(shù);

是周期函數(shù);

上恰有兩個零點.

其中真命題的序號是______.(請寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線的極坐標方程是,以極點為原點,極軸為軸非負半軸建立平面直角坐標系,直線的參數(shù)方程為為參數(shù)).

1)寫出曲線的直角坐標方程和直線的普通方程;

2)在(1)中,設曲線經(jīng)過伸縮變換得到曲線,設曲線上任意一點為,當點到直線的距離取最大值時,求此時點的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某水果批發(fā)商經(jīng)銷某種水果(以下簡稱水果),購入價為300/袋,并以360/袋的價格售出,若前8小時內(nèi)所購進的水果沒有售完,則批發(fā)商將沒售完的水果以220/袋的價格低價處理完畢(根據(jù)經(jīng)驗,2小時內(nèi)完全能夠把水果低價處理完,且當天不再購入).該水果批發(fā)商根據(jù)往年的銷量,統(tǒng)計了100水果在每天的前8小時內(nèi)的銷售量,制成如下頻數(shù)分布條形圖.

表示水果一天前8小時內(nèi)的銷售量,表示水果批發(fā)商一天經(jīng)營水果的利潤,表示水果批發(fā)商一天批發(fā)水果的袋數(shù).

1)若,求的函數(shù)解析式;

2)假設這100天中水果批發(fā)商每天購入水果15袋或者16袋,分別計算該水果批發(fā)商這100天經(jīng)營水果的利潤的平均數(shù),以此作為決策依據(jù),每天應購入水果15袋還是16袋?

查看答案和解析>>

同步練習冊答案