13.函數(shù)y=$\frac{1}{2}$sin(2x+$\frac{π}{3}$)-sinxcosx的單調(diào)減區(qū)間是( 。
A.[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z)B.[kπ-$\frac{7π}{12}$,kπ-$\frac{π}{12}$](k∈Z)
C.[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$](k∈Z)D.[kπ+$\frac{π}{3}$,kπ+$\frac{5π}{6}$](k∈Z)

分析 y=$\frac{1}{4}$sin2x+$\frac{\sqrt{3}}{4}$cos2x-$\frac{1}{2}$sin2x=-$\frac{1}{2}$sin(2x-$\frac{π}{3}$),利用正弦函數(shù)的單調(diào)增區(qū)間,求出函數(shù)y=$\frac{1}{2}$sin(2x+$\frac{π}{3}$)-sinxcosx的單調(diào)減區(qū)間.

解答 解:y=$\frac{1}{4}$sin2x+$\frac{\sqrt{3}}{4}$cos2x-$\frac{1}{2}$sin2x=-$\frac{1}{2}$sin(2x-$\frac{π}{3}$),
由-$\frac{π}{2}$+2kπ≤2x-$\frac{π}{3}$≤$\frac{π}{2}$+2kπ,則x∈[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z),
即函數(shù)y=$\frac{1}{2}$sin(2x+$\frac{π}{3}$)-sinxcosx的單調(diào)減區(qū)間是[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z),
故選:A.

點評 本題考查三角函數(shù)的化簡,考查三角函數(shù)的圖象與性質(zhì),正確化簡函數(shù)是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合M={x|x2-x-2≤0},N={y|y=2x},則M∩N=( 。
A.(0,2]B.(0,2)C.[0,2]D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.兩個函數(shù)的圖象經(jīng)過平移后能夠重合,稱這兩個函數(shù)為“同形”函數(shù),則下列四個函數(shù):f1(x)=2log2(x+2),f2(x)=log2(x+2),f3(x)=log2(x+2)2,f4(x)=log22x,為“同形”函數(shù)的是( 。
A.f1(x)與f3(x)B.f2(x)與f4(x)C.f1(x)與f2(x)D.f3(x)與f4(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A={1,2,3,4},B={x|y=$\sqrt{3-x}$},則A∩B=( 。
A.{1,2}B.{1,2,3}C.{4,5}D.{3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=cosx+ex-2(x<0)與g(x)=cosx+ln(x+m)圖象上存在關(guān)于y軸對稱的點,則m的取值范圍是(  )
A.(-∞,$\frac{1}{e}$)B.(-∞,$\frac{1}{\sqrt{e}}$)C.(-∞,$\sqrt{e}$)D.(-∞,e)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.(x-1)(x+2)6的展開式中x4的系數(shù)為( 。
A.100B.15C.-35D.-220

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,四棱錐P-ABCD的底面是直角梯形,AB∥CD,AB⊥AD,△PAB和△PAD是兩個邊長為2的正三角形,DC=4,O為BD的中點,E為PA的一動點.
(1)求證:PO⊥平面ABCD;
(2)求直線CB與平面PDC所成角的正弦值;
(3)當(dāng)$\overrightarrow{PE}=λ\overrightarrow{PA}$時,二面角E-BD-A的余弦值為$\frac{{\sqrt{5}}}{5}$,求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{|x-y|≤1}\\{|2x+y|≤2}\end{array}\right.$則|x-$\frac{1}{3}$|-y的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知a≥$\frac{4}{3}$${∫}_{0}^{\frac{π}{6}}$cosθdθ,則曲線f(x)=ax+$\frac{2}{a}$ln(ax-1)在點(2,f(2))處切線的斜率的最小值為$\frac{5}{2}$.

查看答案和解析>>

同步練習(xí)冊答案