【題目】已知函數(shù),且在處的切線方程為.
(1)求的值;
(2)設(shè),若對任意的,,求實(shí)數(shù)的取值范圍.
【答案】(1);(2).
【解析】
(1)對函數(shù)進(jìn)行求導(dǎo),根據(jù)導(dǎo)數(shù)的幾何意義,結(jié)合切線的方程,可以得到兩個方程,解方程組即可求出的值;
(2)對任意的,,等價于在上的最小值不小于的最大值,利用導(dǎo)數(shù)進(jìn)行分類求解即可.
(1),在處的切線方程為,所以有:;
(2)由(1)可知:
顯然當(dāng)時,,函數(shù)單調(diào)遞減,當(dāng)時,,函數(shù)單調(diào)遞增,故函數(shù)在上的最小值為:.
.
當(dāng)時,函數(shù)的最大值為:,于是由可得:,而,所以;
當(dāng)時,函數(shù)的最大值為:,于是由
可得:c無解;
當(dāng)時,
若時,即時,,于是由
可得:,因此;
若時,即時,函數(shù)的最大值為:
,于是由可得:
,綜上所述:實(shí)數(shù)的取值范圍為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓(),點(diǎn)為橢圓短軸的上端點(diǎn),為橢圓上異于點(diǎn)的任一點(diǎn),若點(diǎn)到點(diǎn)距離的最大值僅在點(diǎn)為短軸的另一端點(diǎn)時取到,則稱此橢圓為“圓橢圓”,已知.
(1)若,判斷橢圓是否為“圓橢圓”;
(2)若橢圓是“圓橢圓”,求的取值范圍;
(3)若橢圓是“圓橢圓”,且取最大值,為關(guān)于原點(diǎn)的對稱點(diǎn),也異于點(diǎn),直線、分別與軸交于、兩點(diǎn),試問以線段為直徑的圓是否過定點(diǎn)?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)討論函數(shù)零點(diǎn)的個數(shù);
(3)若存在兩個不同的零點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形ABCD為正方形,平面ABCD,,,.
(1)求證:平面PAD;
(2)在棱AB上是否存在一點(diǎn)F,使得平面平面PCE?如果存在,求的值;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,正確的個數(shù)是( )
①直線上有兩個點(diǎn)到平面的距離相等,則這條直線和這個平面平行;
②為異面直線,則過且與平行的平面有且僅有一個;
③直四棱柱是直平行六面體;
④兩相鄰側(cè)面所成角相等的棱錐是正棱錐.
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在直角梯形BCEF中,∠CBF=∠BCE=90°,A,D分別是BF,CE上的點(diǎn),AD∥BC,且AB=DE=2BC=2AF(如圖1),將四邊形ADEF沿AD折起,連結(jié)BE、BF、CE(如圖2).在折起的過程中,下列說法中正確的個數(shù)( 。
①AC∥平面BEF;
②B、C、E、F四點(diǎn)可能共面;
③若EF⊥CF,則平面ADEF⊥平面ABCD;
④平面BCE與平面BEF可能垂直
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)在“精準(zhǔn)扶貧”行動中,決定幫助一貧困山區(qū)將水果運(yùn)出銷售.現(xiàn)有8輛甲型車和4輛乙型車,甲型車每次最多能運(yùn)6噸且每天能運(yùn)4次,乙型車每次最多能運(yùn)10噸且每天能運(yùn)3次,甲型車每天費(fèi)用320元,乙型車每天費(fèi)用504元.若需要一天內(nèi)把180噸水果運(yùn)輸?shù)交疖囌,則通過合理調(diào)配車輛運(yùn)送這批水果的費(fèi)用最少為______元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列的首項(xiàng)為,公差為,等比數(shù)列的首項(xiàng)為,公比為,其中,且.
(1)求證:,并由推導(dǎo)的值;
(2)若數(shù)列共有項(xiàng),前項(xiàng)的和為,其后的項(xiàng)的和為,再其后的項(xiàng)的和為,求的比值.
(3)若數(shù)列的前項(xiàng),前項(xiàng)、前項(xiàng)的和分別為,試用含字母的式子來表示(即,且不含字母)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,.
(1)試判斷函數(shù)的奇偶性,并說明理由;
(2)若,求在上的最大值;
(3)若,求函數(shù)在上的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com