已知點(diǎn)A(3,2), 點(diǎn)P是拋物線y2=4x上的一個(gè)動(dòng)點(diǎn),F(xiàn)為拋物線的焦點(diǎn),求的最小值及此時(shí)P點(diǎn)的坐標(biāo).

4, (1,2).

解析試題分析:設(shè)點(diǎn)P在準(zhǔn)線上的射影為D,由拋物線的定義把問題轉(zhuǎn)化為求PA+PD的最小值,同時(shí)可推斷出當(dāng)D,P,A三點(diǎn)共線時(shí)PA+PD最小,答案可得.
設(shè)點(diǎn)P在準(zhǔn)線上的射影為D,記拋物線y2=2x的焦點(diǎn)為F(1,0),準(zhǔn)線l是x= -1,由拋物線的定義知點(diǎn)P到焦點(diǎn)F的距離等于它到準(zhǔn)線l的距離,即PF=PD  ,
因此PA +PF="PA+" PDAD="4," 即當(dāng)D,P,M三點(diǎn)共線時(shí)PA+PD最小,此時(shí)P(1,2).
考點(diǎn):拋物線的簡(jiǎn)單性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的方程為,直線的方程為,點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)在拋物線上.
(1)求拋物線的方程;
(2)已知,點(diǎn)是拋物線的焦點(diǎn),是拋物線上的動(dòng)點(diǎn),求的最小值及此時(shí)點(diǎn)的坐標(biāo);
(3)設(shè)點(diǎn)、是拋物線上的動(dòng)點(diǎn),點(diǎn)是拋物線與軸正半軸交點(diǎn),是以為直角頂點(diǎn)的直角三角形.試探究直線是否經(jīng)過定點(diǎn)?若經(jīng)過,求出定點(diǎn)的坐標(biāo);若不經(jīng)過,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的焦點(diǎn)為,點(diǎn)是拋物線上的一點(diǎn),且其縱坐標(biāo)為4,
(1)求拋物線的方程;
(2) 設(shè)點(diǎn)是拋物線上的兩點(diǎn),的角平分線與軸垂直,求的面積最大時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,離心率為的橢圓上的點(diǎn)到其左焦點(diǎn)的距離的最大值為3,過橢圓內(nèi)一點(diǎn)的兩條直線分別與橢圓交于點(diǎn)、、,且滿足,其中為常數(shù),過點(diǎn)的平行線交橢圓于兩點(diǎn).

(1)求橢圓的方程;
(2)若點(diǎn),求直線的方程,并證明點(diǎn)平分線段.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知?jiǎng)訄A與圓相切,且與圓相內(nèi)切,記圓心的軌跡為曲線;設(shè)為曲線上的一個(gè)不在軸上的動(dòng)點(diǎn),為坐標(biāo)原點(diǎn),過點(diǎn)的平行線交曲線兩個(gè)不同的點(diǎn).
(1)求曲線的方程;
(2)試探究的比值能否為一個(gè)常數(shù)?若能,求出這個(gè)常數(shù),若不能,請(qǐng)說明理由;
(3)記的面積為,的面積為,令,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓過點(diǎn)和點(diǎn)
(1)求橢圓的方程;
(2)設(shè)過點(diǎn)的直線與橢圓交于兩點(diǎn),且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率,且直線是拋物線的一條切線.
(1)求橢圓的方程;
(2)點(diǎn)P 為橢圓上一點(diǎn),直線,判斷l(xiāng)與橢圓的位置關(guān)系并給出理由;
(3)過橢圓上一點(diǎn)P作橢圓的切線交直線于點(diǎn)A,試判斷線段AP為直徑的圓是否恒過定點(diǎn),若是,求出定點(diǎn)坐標(biāo);若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖已知拋物線過點(diǎn),直線,兩點(diǎn),過點(diǎn)且平行于軸的直線分別與直線軸相交于點(diǎn),
 
(1)求的值;
(2)是否存在定點(diǎn),當(dāng)直線過點(diǎn)時(shí),△與△的面積相等?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知?jiǎng)狱c(diǎn)M(x,y)到直線l:x = 4的距離是它到點(diǎn)N(1,0)的距離的2倍.
(1)求動(dòng)點(diǎn)M的軌跡C的方程;
(2)過點(diǎn)P(0,3)的直線m與軌跡C交于A, B兩點(diǎn). 若A是PB的中點(diǎn), 求直線m的斜率.

查看答案和解析>>

同步練習(xí)冊(cè)答案